Sui Liu, Zixiao Jiang, Junlei He, Xiangxin Niu, Changhua Yue, Shiou Yih Lee, Zhangxin Yu, Yangyang Liu
{"title":"通过分子对接和芯片数据分析,揭示金白清热方治疗人乳头瘤病毒宫颈癌多途径、多基因调控机制的先进网络药理学研究","authors":"Sui Liu, Zixiao Jiang, Junlei He, Xiangxin Niu, Changhua Yue, Shiou Yih Lee, Zhangxin Yu, Yangyang Liu","doi":"10.2174/0109298673377164250710100915","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Cervical cancer, primarily driven by high-risk human papillomavirus (HPV) infection, remains a global health challenge due to limited therapeutic efficacy and adverse effects of conventional treatments. Jinbai Heat-Clearing Prescription (JBHCP), a Traditional Chinese Medicine (TCM), exhibits potential against HPV-associated cervical cancer, yet its molecular mechanisms are unclear. This study aimed to elucidate JBHCP's multitarget regulatory mechanisms in HPV-induced cervical carcinogenesis.</p><p><strong>Methods: </strong>Network pharmacology, UHPLC-Q-TOF-MS-based metabolomics, and microarray data analysis were integrated to identify the bioactive components and therapeutic targets of JBHCP. Molecular docking and 60 ns Molecular Dynamics (MD) simulations were used to assess the interactions between key compounds (JBHCP673, JBHCP727) and cyclin-dependent kinases (CDK1/ CDK2). Gene Ontology (GO), KEGG pathway enrichment, and Protein-Protein Interaction (PPI) network analyses were performed to explore biological functions and signaling pathways.</p><p><strong>Results: </strong>UHPLC-Q-TOF-MS identified 816 compounds in JBHCP, with 86 meeting drug-likeness criteria. Network analysis revealed 215 shared targets between JBHCP and HPV-induced cervical cancer, including CDK1 and CDK2 as core regulators. Enrichment analysis highlighted JBHCP's involvement in cell cycle regulation, PI3K/AKT, and STAT3 signaling pathways. Molecular docking demonstrated strong binding affinities of JBHCP727 with CDK1 (-7.36 kcal/mol) and CDK2 (-6.13 kcal/mol). MD simulations confirmed stable binding of JBHCP727 to CDK1/2, while JBHCP673 exhibited instability. ADMET predictions supported JBHCP727's drug-like properties.</p><p><strong>Discussion: </strong>JBHCP exerts anticancer effects by targeting CDK1/2, disrupting cell cycle progression, and modulating oncogenic pathways (PI3K/AKT, STAT3). The stability of JBHCP727-CDK complexes suggests its role in inhibiting HPV-driven proliferation. Multi-component synergy enables JBHCP to act on diverse pathways, aligning with TCM's \"multitarget\" paradigm.</p><p><strong>Conclusion: </strong>This study provides the first systematic evidence of JBHCP's multi-pathway mechanism against HPV-associated cervical cancer, emphasizing CDK1/2 inhibition as a key therapeutic strategy. JBHCP727 emerges as a promising lead compound. Further in vivo and clinical validation is warranted to translate these findings into clinical applications.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Advanced Network Pharmacology Study Reveals the Multi-Pathway and Multi-Gene Regulatory Mechanism of Jinbai Heat-clearing Prescription in HPV-induced Cervical Cancer via Molecular Docking and Microarray Data Analysis.\",\"authors\":\"Sui Liu, Zixiao Jiang, Junlei He, Xiangxin Niu, Changhua Yue, Shiou Yih Lee, Zhangxin Yu, Yangyang Liu\",\"doi\":\"10.2174/0109298673377164250710100915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Cervical cancer, primarily driven by high-risk human papillomavirus (HPV) infection, remains a global health challenge due to limited therapeutic efficacy and adverse effects of conventional treatments. Jinbai Heat-Clearing Prescription (JBHCP), a Traditional Chinese Medicine (TCM), exhibits potential against HPV-associated cervical cancer, yet its molecular mechanisms are unclear. This study aimed to elucidate JBHCP's multitarget regulatory mechanisms in HPV-induced cervical carcinogenesis.</p><p><strong>Methods: </strong>Network pharmacology, UHPLC-Q-TOF-MS-based metabolomics, and microarray data analysis were integrated to identify the bioactive components and therapeutic targets of JBHCP. Molecular docking and 60 ns Molecular Dynamics (MD) simulations were used to assess the interactions between key compounds (JBHCP673, JBHCP727) and cyclin-dependent kinases (CDK1/ CDK2). Gene Ontology (GO), KEGG pathway enrichment, and Protein-Protein Interaction (PPI) network analyses were performed to explore biological functions and signaling pathways.</p><p><strong>Results: </strong>UHPLC-Q-TOF-MS identified 816 compounds in JBHCP, with 86 meeting drug-likeness criteria. Network analysis revealed 215 shared targets between JBHCP and HPV-induced cervical cancer, including CDK1 and CDK2 as core regulators. Enrichment analysis highlighted JBHCP's involvement in cell cycle regulation, PI3K/AKT, and STAT3 signaling pathways. Molecular docking demonstrated strong binding affinities of JBHCP727 with CDK1 (-7.36 kcal/mol) and CDK2 (-6.13 kcal/mol). MD simulations confirmed stable binding of JBHCP727 to CDK1/2, while JBHCP673 exhibited instability. ADMET predictions supported JBHCP727's drug-like properties.</p><p><strong>Discussion: </strong>JBHCP exerts anticancer effects by targeting CDK1/2, disrupting cell cycle progression, and modulating oncogenic pathways (PI3K/AKT, STAT3). The stability of JBHCP727-CDK complexes suggests its role in inhibiting HPV-driven proliferation. Multi-component synergy enables JBHCP to act on diverse pathways, aligning with TCM's \\\"multitarget\\\" paradigm.</p><p><strong>Conclusion: </strong>This study provides the first systematic evidence of JBHCP's multi-pathway mechanism against HPV-associated cervical cancer, emphasizing CDK1/2 inhibition as a key therapeutic strategy. JBHCP727 emerges as a promising lead compound. Further in vivo and clinical validation is warranted to translate these findings into clinical applications.</p>\",\"PeriodicalId\":10984,\"journal\":{\"name\":\"Current medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0109298673377164250710100915\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673377164250710100915","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
An Advanced Network Pharmacology Study Reveals the Multi-Pathway and Multi-Gene Regulatory Mechanism of Jinbai Heat-clearing Prescription in HPV-induced Cervical Cancer via Molecular Docking and Microarray Data Analysis.
Introduction: Cervical cancer, primarily driven by high-risk human papillomavirus (HPV) infection, remains a global health challenge due to limited therapeutic efficacy and adverse effects of conventional treatments. Jinbai Heat-Clearing Prescription (JBHCP), a Traditional Chinese Medicine (TCM), exhibits potential against HPV-associated cervical cancer, yet its molecular mechanisms are unclear. This study aimed to elucidate JBHCP's multitarget regulatory mechanisms in HPV-induced cervical carcinogenesis.
Methods: Network pharmacology, UHPLC-Q-TOF-MS-based metabolomics, and microarray data analysis were integrated to identify the bioactive components and therapeutic targets of JBHCP. Molecular docking and 60 ns Molecular Dynamics (MD) simulations were used to assess the interactions between key compounds (JBHCP673, JBHCP727) and cyclin-dependent kinases (CDK1/ CDK2). Gene Ontology (GO), KEGG pathway enrichment, and Protein-Protein Interaction (PPI) network analyses were performed to explore biological functions and signaling pathways.
Results: UHPLC-Q-TOF-MS identified 816 compounds in JBHCP, with 86 meeting drug-likeness criteria. Network analysis revealed 215 shared targets between JBHCP and HPV-induced cervical cancer, including CDK1 and CDK2 as core regulators. Enrichment analysis highlighted JBHCP's involvement in cell cycle regulation, PI3K/AKT, and STAT3 signaling pathways. Molecular docking demonstrated strong binding affinities of JBHCP727 with CDK1 (-7.36 kcal/mol) and CDK2 (-6.13 kcal/mol). MD simulations confirmed stable binding of JBHCP727 to CDK1/2, while JBHCP673 exhibited instability. ADMET predictions supported JBHCP727's drug-like properties.
Discussion: JBHCP exerts anticancer effects by targeting CDK1/2, disrupting cell cycle progression, and modulating oncogenic pathways (PI3K/AKT, STAT3). The stability of JBHCP727-CDK complexes suggests its role in inhibiting HPV-driven proliferation. Multi-component synergy enables JBHCP to act on diverse pathways, aligning with TCM's "multitarget" paradigm.
Conclusion: This study provides the first systematic evidence of JBHCP's multi-pathway mechanism against HPV-associated cervical cancer, emphasizing CDK1/2 inhibition as a key therapeutic strategy. JBHCP727 emerges as a promising lead compound. Further in vivo and clinical validation is warranted to translate these findings into clinical applications.
期刊介绍:
Aims & Scope
Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.