José Carlos Prado Junior, Alexandre Evsukoff, Roberto de Andrade Medronho
{"title":"基于极端梯度增强预测模型的COVID-19死亡预测模型动态评价","authors":"José Carlos Prado Junior, Alexandre Evsukoff, Roberto de Andrade Medronho","doi":"10.1590/1413-81232025307.18112024","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic has evolved dynamically with the emergence of new variants and an increase in vaccination coverage. Given the high fatality rate of severe COVID-19, disease severity prediction models must incorporate these temporal variations. In this light, the present study seeks to develop a model to predict COVID-19 mortality in hospitalized patients. The Extreme Gradient Boost model was used to predict COVID-19 mortality upon hospital admission, and the results were correlated with laboratory test results, vaccination status, comorbidities, and clinical signs and symptoms at the time of admission. Clinical data from electronic medical records, vaccination databases, and severe acute respiratory syndrome (SARS) reports were used. The XGBoost model performed best, with an area under the curve (AUC) of 96.4% at epidemiological week 53 of 2020. The most significant variables for the model were body temperature, blood pressure, respiratory rate, heart rate, urea, magnesium, sodium, and C reactive protein levels. Our study identified key clinical and laboratory variables for predicting COVID-19 mortality.</p>","PeriodicalId":10195,"journal":{"name":"Ciencia & saude coletiva","volume":"30 7","pages":"e18112024"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic evaluation of a COVID-19 death prediction model using Extreme Gradient Boosting Predictive Model.\",\"authors\":\"José Carlos Prado Junior, Alexandre Evsukoff, Roberto de Andrade Medronho\",\"doi\":\"10.1590/1413-81232025307.18112024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The COVID-19 pandemic has evolved dynamically with the emergence of new variants and an increase in vaccination coverage. Given the high fatality rate of severe COVID-19, disease severity prediction models must incorporate these temporal variations. In this light, the present study seeks to develop a model to predict COVID-19 mortality in hospitalized patients. The Extreme Gradient Boost model was used to predict COVID-19 mortality upon hospital admission, and the results were correlated with laboratory test results, vaccination status, comorbidities, and clinical signs and symptoms at the time of admission. Clinical data from electronic medical records, vaccination databases, and severe acute respiratory syndrome (SARS) reports were used. The XGBoost model performed best, with an area under the curve (AUC) of 96.4% at epidemiological week 53 of 2020. The most significant variables for the model were body temperature, blood pressure, respiratory rate, heart rate, urea, magnesium, sodium, and C reactive protein levels. Our study identified key clinical and laboratory variables for predicting COVID-19 mortality.</p>\",\"PeriodicalId\":10195,\"journal\":{\"name\":\"Ciencia & saude coletiva\",\"volume\":\"30 7\",\"pages\":\"e18112024\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ciencia & saude coletiva\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1590/1413-81232025307.18112024\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ciencia & saude coletiva","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1590/1413-81232025307.18112024","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Dynamic evaluation of a COVID-19 death prediction model using Extreme Gradient Boosting Predictive Model.
The COVID-19 pandemic has evolved dynamically with the emergence of new variants and an increase in vaccination coverage. Given the high fatality rate of severe COVID-19, disease severity prediction models must incorporate these temporal variations. In this light, the present study seeks to develop a model to predict COVID-19 mortality in hospitalized patients. The Extreme Gradient Boost model was used to predict COVID-19 mortality upon hospital admission, and the results were correlated with laboratory test results, vaccination status, comorbidities, and clinical signs and symptoms at the time of admission. Clinical data from electronic medical records, vaccination databases, and severe acute respiratory syndrome (SARS) reports were used. The XGBoost model performed best, with an area under the curve (AUC) of 96.4% at epidemiological week 53 of 2020. The most significant variables for the model were body temperature, blood pressure, respiratory rate, heart rate, urea, magnesium, sodium, and C reactive protein levels. Our study identified key clinical and laboratory variables for predicting COVID-19 mortality.
期刊介绍:
Ciência & Saúde Coletiva publishes debates, analyses, and results of research on a Specific Theme considered current and relevant to the field of Collective Health. Its abbreviated title is Ciênc. saúde coletiva, which should be used in bibliographies, footnotes and bibliographical references and strips.