DualNetM:用于推断功能导向标记的自适应双网络框架。

IF 4.5 1区 生物学 Q1 BIOLOGY
Bingjie Dai, Hanshuang Li, Peizhuo Wang, Pengwei Hu, Jixiang Xing, Yanan Hu, Qilemuge Xi, Yongchun Zuo
{"title":"DualNetM:用于推断功能导向标记的自适应双网络框架。","authors":"Bingjie Dai, Hanshuang Li, Peizhuo Wang, Pengwei Hu, Jixiang Xing, Yanan Hu, Qilemuge Xi, Yongchun Zuo","doi":"10.1186/s12915-025-02367-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding how genes regulate each other in cells is crucial for determining cell identity and development, and single-cell sequencing technologies facilitate such research through gene regulatory networks (GRNs). However, identifying important marker genes within these complex networks remains difficult.</p><p><strong>Results: </strong>Consequently, we present DualNetM, a deep generative model with a dual-network framework for inferring functional-oriented markers. It employs graph neural networks with adaptive attention mechanisms to construct GRNs from single-cell data. Functional-oriented markers are identified from bidirectional co-regulatory networks through the integration of gene co-expression networks. Benchmark tests highlighted the superior performance of DualNetM in constructing GRNs, along with a stronger association with biological functions in marker inference. In the melanoma dataset, DualNetM successfully inferred novel malignant markers, and survival analysis results showed that multiple novel markers were associated with lethality in malignant melanoma. Additionally, DualNetM identified stage-specific functional markers and clarified their specific roles in mouse embryonic fibroblast reprogramming. DualNetM's marker inference function demonstrated stronger biological relevance during primed reprogramming.</p><p><strong>Conclusions: </strong>In summary, DualNetM effectively facilitated the inference of functional-oriented markers from complex GRNs.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"23 1","pages":"254"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345081/pdf/","citationCount":"0","resultStr":"{\"title\":\"DualNetM: an adaptive dual network framework for inferring functional-oriented markers.\",\"authors\":\"Bingjie Dai, Hanshuang Li, Peizhuo Wang, Pengwei Hu, Jixiang Xing, Yanan Hu, Qilemuge Xi, Yongchun Zuo\",\"doi\":\"10.1186/s12915-025-02367-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Understanding how genes regulate each other in cells is crucial for determining cell identity and development, and single-cell sequencing technologies facilitate such research through gene regulatory networks (GRNs). However, identifying important marker genes within these complex networks remains difficult.</p><p><strong>Results: </strong>Consequently, we present DualNetM, a deep generative model with a dual-network framework for inferring functional-oriented markers. It employs graph neural networks with adaptive attention mechanisms to construct GRNs from single-cell data. Functional-oriented markers are identified from bidirectional co-regulatory networks through the integration of gene co-expression networks. Benchmark tests highlighted the superior performance of DualNetM in constructing GRNs, along with a stronger association with biological functions in marker inference. In the melanoma dataset, DualNetM successfully inferred novel malignant markers, and survival analysis results showed that multiple novel markers were associated with lethality in malignant melanoma. Additionally, DualNetM identified stage-specific functional markers and clarified their specific roles in mouse embryonic fibroblast reprogramming. DualNetM's marker inference function demonstrated stronger biological relevance during primed reprogramming.</p><p><strong>Conclusions: </strong>In summary, DualNetM effectively facilitated the inference of functional-oriented markers from complex GRNs.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"23 1\",\"pages\":\"254\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345081/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-025-02367-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-025-02367-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:了解细胞中基因如何相互调控对于确定细胞的身份和发育至关重要,单细胞测序技术通过基因调控网络(grn)促进了这一研究。然而,在这些复杂的网络中识别重要的标记基因仍然很困难。结果:因此,我们提出了DualNetM,这是一个具有双网络框架的深度生成模型,用于推断面向功能的标记。它采用具有自适应注意机制的图神经网络从单细胞数据构建grn。功能导向的标记是通过整合基因共表达网络从双向共调控网络中识别出来的。基准测试突出了DualNetM在构建grn方面的优越性能,以及在标记推断方面与生物功能的更强关联。在黑色素瘤数据集中,DualNetM成功推断出新的恶性标记,生存分析结果显示,多个新的标记与恶性黑色素瘤的致死率相关。此外,DualNetM还鉴定了阶段特异性功能标记,并阐明了它们在小鼠胚胎成纤维细胞重编程中的特定作用。DualNetM的标记推断功能在启动重编程过程中显示出更强的生物学相关性。结论:总之,DualNetM有效地促进了从复杂grn中推断出功能导向的标记物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DualNetM: an adaptive dual network framework for inferring functional-oriented markers.

Background: Understanding how genes regulate each other in cells is crucial for determining cell identity and development, and single-cell sequencing technologies facilitate such research through gene regulatory networks (GRNs). However, identifying important marker genes within these complex networks remains difficult.

Results: Consequently, we present DualNetM, a deep generative model with a dual-network framework for inferring functional-oriented markers. It employs graph neural networks with adaptive attention mechanisms to construct GRNs from single-cell data. Functional-oriented markers are identified from bidirectional co-regulatory networks through the integration of gene co-expression networks. Benchmark tests highlighted the superior performance of DualNetM in constructing GRNs, along with a stronger association with biological functions in marker inference. In the melanoma dataset, DualNetM successfully inferred novel malignant markers, and survival analysis results showed that multiple novel markers were associated with lethality in malignant melanoma. Additionally, DualNetM identified stage-specific functional markers and clarified their specific roles in mouse embryonic fibroblast reprogramming. DualNetM's marker inference function demonstrated stronger biological relevance during primed reprogramming.

Conclusions: In summary, DualNetM effectively facilitated the inference of functional-oriented markers from complex GRNs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信