使用高分辨率MRI对人类屏状体进行手动分割的全面可靠的方案。

IF 2.9 3区 医学 Q1 ANATOMY & MORPHOLOGY
Steven Seung-Suk Kang, Joseph Bodenheimer, Kayley Morris, Tracy Butler
{"title":"使用高分辨率MRI对人类屏状体进行手动分割的全面可靠的方案。","authors":"Steven Seung-Suk Kang, Joseph Bodenheimer, Kayley Morris, Tracy Butler","doi":"10.1007/s00429-025-02993-7","DOIUrl":null,"url":null,"abstract":"<p><p>The claustrum is a thin gray matter structure in each brain hemisphere, characterized by exceptionally high connectivity with nearly all brain regions. Despite extensive animal studies on its anatomy and function and growing evidence of claustral deficits in neuropsychiatric disorders, its specific roles in normal and abnormal human brain function remain largely unknown. This is primarily due to its thin and complex morphology, which limits accurate anatomical delineation and neural activity isolation in conventional in vivo neuroimaging. To facilitate future neuroimaging studies, we developed a comprehensive and reliable manual segmentation protocol based on a cellular-resolution brain atlas and high-resolution (0.7 mm isotropic) MRI data. The protocols involve detailed guidelines to delineate the entire claustrum, including the inferior parts that have not been clearly described in earlier MRI studies. Additionally, we propose a geometric method to parcellate the claustrum into three subregions (the dorsal, ventral, and temporal claustrum) along the superior-to-inferior axis. The mean bilateral claustrum volume in 10 young adults was 3307.5 mm<sup>3</sup>, approximately 0.21% of total intracranial volume. Our segmentation protocol demonstrated high inter- and intra-rater reliability (ICC > 0.89, DSC > 0.85), confirming its replicability. This comprehensive and reliable manual segmentation protocol offers a robust foundation for anatomically precise neuroimaging investigations of the human claustrum.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":"230 7","pages":"134"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive and reliable protocol for manual segmentation of the human claustrum using high-resolution MRI.\",\"authors\":\"Steven Seung-Suk Kang, Joseph Bodenheimer, Kayley Morris, Tracy Butler\",\"doi\":\"10.1007/s00429-025-02993-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The claustrum is a thin gray matter structure in each brain hemisphere, characterized by exceptionally high connectivity with nearly all brain regions. Despite extensive animal studies on its anatomy and function and growing evidence of claustral deficits in neuropsychiatric disorders, its specific roles in normal and abnormal human brain function remain largely unknown. This is primarily due to its thin and complex morphology, which limits accurate anatomical delineation and neural activity isolation in conventional in vivo neuroimaging. To facilitate future neuroimaging studies, we developed a comprehensive and reliable manual segmentation protocol based on a cellular-resolution brain atlas and high-resolution (0.7 mm isotropic) MRI data. The protocols involve detailed guidelines to delineate the entire claustrum, including the inferior parts that have not been clearly described in earlier MRI studies. Additionally, we propose a geometric method to parcellate the claustrum into three subregions (the dorsal, ventral, and temporal claustrum) along the superior-to-inferior axis. The mean bilateral claustrum volume in 10 young adults was 3307.5 mm<sup>3</sup>, approximately 0.21% of total intracranial volume. Our segmentation protocol demonstrated high inter- and intra-rater reliability (ICC > 0.89, DSC > 0.85), confirming its replicability. This comprehensive and reliable manual segmentation protocol offers a robust foundation for anatomically precise neuroimaging investigations of the human claustrum.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\"230 7\",\"pages\":\"134\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-025-02993-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-025-02993-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

屏状体是一种薄薄的灰质结构,位于大脑的每个半球,其特征是与几乎所有大脑区域都有异常高的连通性。尽管对其解剖和功能进行了广泛的动物研究,并且越来越多的证据表明,在神经精神疾病中存在闭孔缺陷,但其在正常和异常人脑功能中的具体作用在很大程度上仍然未知。这主要是由于其薄而复杂的形态,这限制了传统体内神经成像中准确的解剖描绘和神经活动分离。为了促进未来的神经影像学研究,我们基于细胞分辨率脑图谱和高分辨率(0.7 mm各向同性)MRI数据开发了一种全面可靠的人工分割方案。该方案包括详细的指导方针,以描绘整个屏状体,包括在早期MRI研究中未明确描述的下部部分。此外,我们提出了一种几何方法,沿上下轴将屏状体分成三个亚区(背侧、腹侧和颞屏状体)。10例年轻人双侧屏状体平均容积为3307.5 mm3,约占颅内总容积的0.21%。我们的分割协议显示出较高的内部和内部可靠性(ICC > 0.89, DSC > 0.85),证实了其可复制性。这种全面和可靠的人工分割协议提供了一个坚实的基础,解剖精确的神经影像学研究的人类屏状体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comprehensive and reliable protocol for manual segmentation of the human claustrum using high-resolution MRI.

The claustrum is a thin gray matter structure in each brain hemisphere, characterized by exceptionally high connectivity with nearly all brain regions. Despite extensive animal studies on its anatomy and function and growing evidence of claustral deficits in neuropsychiatric disorders, its specific roles in normal and abnormal human brain function remain largely unknown. This is primarily due to its thin and complex morphology, which limits accurate anatomical delineation and neural activity isolation in conventional in vivo neuroimaging. To facilitate future neuroimaging studies, we developed a comprehensive and reliable manual segmentation protocol based on a cellular-resolution brain atlas and high-resolution (0.7 mm isotropic) MRI data. The protocols involve detailed guidelines to delineate the entire claustrum, including the inferior parts that have not been clearly described in earlier MRI studies. Additionally, we propose a geometric method to parcellate the claustrum into three subregions (the dorsal, ventral, and temporal claustrum) along the superior-to-inferior axis. The mean bilateral claustrum volume in 10 young adults was 3307.5 mm3, approximately 0.21% of total intracranial volume. Our segmentation protocol demonstrated high inter- and intra-rater reliability (ICC > 0.89, DSC > 0.85), confirming its replicability. This comprehensive and reliable manual segmentation protocol offers a robust foundation for anatomically precise neuroimaging investigations of the human claustrum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信