Xin Wang, Zhi-Hua Zeng, Peng-Fei Ma, Yun-Long Liu, Hua-Ying Sun, Hong Wang, Hong Ma, De-Zhu Li, Wei Zhou
{"title":"木本竹的无性系寿命和神秘的开花与蛋白质进化速率有关。","authors":"Xin Wang, Zhi-Hua Zeng, Peng-Fei Ma, Yun-Long Liu, Hua-Ying Sun, Hong Wang, Hong Ma, De-Zhu Li, Wei Zhou","doi":"10.1111/jipb.70019","DOIUrl":null,"url":null,"abstract":"<p><p>Rates of protein evolution (d<sub>N</sub>/d<sub>S</sub>) vary widely across the tree of life. In plants, both life-history traits and GC-biased gene conversion (gBGC) are thought to contribute to this variation, although disentangling their individual contributions remains a challenge. Using information on variation in life-history traits and molecular data in 148 species from Poaceae subfamilies Bambusoideae (mostly woody) and Pooideae (exclusively herbaceous), we investigated the relative importance of modes of reproduction and the non-selective forces of gBGC on protein evolutionary rates between the two subfamilies. Elevated rates of protein evolution associated with relaxed purifying selection were more evident in woody bamboos than in Pooideae and were better explained by reproductive modes than by traits that are likely proxies of effective population size. Although gBGC slightly reduced protein evolutionary rates in both subfamilies, its contribution had only a limited effect on molecular divergence between the groups. Forward simulations generally supported our empirical results on the influence of reproductive mode on selection and gBGC. Our findings from two sister lineages of the grass family provide evidence for association between protein evolution and life-history traits governing reproductive mode and enhance understanding of molecular evolution in plants with contrasting reproductive strategies.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clonal longevity and the enigmatic flowering of woody bamboos are associated with rates of protein evolution.\",\"authors\":\"Xin Wang, Zhi-Hua Zeng, Peng-Fei Ma, Yun-Long Liu, Hua-Ying Sun, Hong Wang, Hong Ma, De-Zhu Li, Wei Zhou\",\"doi\":\"10.1111/jipb.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rates of protein evolution (d<sub>N</sub>/d<sub>S</sub>) vary widely across the tree of life. In plants, both life-history traits and GC-biased gene conversion (gBGC) are thought to contribute to this variation, although disentangling their individual contributions remains a challenge. Using information on variation in life-history traits and molecular data in 148 species from Poaceae subfamilies Bambusoideae (mostly woody) and Pooideae (exclusively herbaceous), we investigated the relative importance of modes of reproduction and the non-selective forces of gBGC on protein evolutionary rates between the two subfamilies. Elevated rates of protein evolution associated with relaxed purifying selection were more evident in woody bamboos than in Pooideae and were better explained by reproductive modes than by traits that are likely proxies of effective population size. Although gBGC slightly reduced protein evolutionary rates in both subfamilies, its contribution had only a limited effect on molecular divergence between the groups. Forward simulations generally supported our empirical results on the influence of reproductive mode on selection and gBGC. Our findings from two sister lineages of the grass family provide evidence for association between protein evolution and life-history traits governing reproductive mode and enhance understanding of molecular evolution in plants with contrasting reproductive strategies.</p>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jipb.70019\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.70019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Clonal longevity and the enigmatic flowering of woody bamboos are associated with rates of protein evolution.
Rates of protein evolution (dN/dS) vary widely across the tree of life. In plants, both life-history traits and GC-biased gene conversion (gBGC) are thought to contribute to this variation, although disentangling their individual contributions remains a challenge. Using information on variation in life-history traits and molecular data in 148 species from Poaceae subfamilies Bambusoideae (mostly woody) and Pooideae (exclusively herbaceous), we investigated the relative importance of modes of reproduction and the non-selective forces of gBGC on protein evolutionary rates between the two subfamilies. Elevated rates of protein evolution associated with relaxed purifying selection were more evident in woody bamboos than in Pooideae and were better explained by reproductive modes than by traits that are likely proxies of effective population size. Although gBGC slightly reduced protein evolutionary rates in both subfamilies, its contribution had only a limited effect on molecular divergence between the groups. Forward simulations generally supported our empirical results on the influence of reproductive mode on selection and gBGC. Our findings from two sister lineages of the grass family provide evidence for association between protein evolution and life-history traits governing reproductive mode and enhance understanding of molecular evolution in plants with contrasting reproductive strategies.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.