基于Tide的大规模质谱数据快速高效搜索。

IF 3.6 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Attila Kertesz-Farkas*, Frank Lawrence Nii Adoquaye Acquaye, Vladislav Ostapenko, Rufino Haroldo Locon, Yang Lu, Charles E. Grant and William Stafford Noble*, 
{"title":"基于Tide的大规模质谱数据快速高效搜索。","authors":"Attila Kertesz-Farkas*,&nbsp;Frank Lawrence Nii Adoquaye Acquaye,&nbsp;Vladislav Ostapenko,&nbsp;Rufino Haroldo Locon,&nbsp;Yang Lu,&nbsp;Charles E. Grant and William Stafford Noble*,&nbsp;","doi":"10.1021/acs.jproteome.5c00297","DOIUrl":null,"url":null,"abstract":"<p >Over the past 30 years, software for searching tandem mass spectrometry data against a protein database has improved dramatically in speed and statistical power. However, existing tools can still struggle to analyze truly massive data sets when either the number of spectra or the number of proteins being analyzed grows too large. Here, we describe enhancements to the Tide search engine that allow it to handle data sets containing &gt;10 million spectra and databases containing &gt;7 billion peptides on commodity hardware. We demonstrate that the new Tide architecture is around 2–7 times faster than the previous version and is now comparable to MSFragger and Sage in speed while requiring much less memory. Tide is open source and is publicly available as precompiled binaries for Windows, Linux, and Mac.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":"24 9","pages":"4831–4837"},"PeriodicalIF":3.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and Memory-Efficient Searching of Large-Scale Mass Spectrometry Data Using Tide\",\"authors\":\"Attila Kertesz-Farkas*,&nbsp;Frank Lawrence Nii Adoquaye Acquaye,&nbsp;Vladislav Ostapenko,&nbsp;Rufino Haroldo Locon,&nbsp;Yang Lu,&nbsp;Charles E. Grant and William Stafford Noble*,&nbsp;\",\"doi\":\"10.1021/acs.jproteome.5c00297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Over the past 30 years, software for searching tandem mass spectrometry data against a protein database has improved dramatically in speed and statistical power. However, existing tools can still struggle to analyze truly massive data sets when either the number of spectra or the number of proteins being analyzed grows too large. Here, we describe enhancements to the Tide search engine that allow it to handle data sets containing &gt;10 million spectra and databases containing &gt;7 billion peptides on commodity hardware. We demonstrate that the new Tide architecture is around 2–7 times faster than the previous version and is now comparable to MSFragger and Sage in speed while requiring much less memory. Tide is open source and is publicly available as precompiled binaries for Windows, Linux, and Mac.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\"24 9\",\"pages\":\"4831–4837\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jproteome.5c00297\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jproteome.5c00297","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在过去的30年里,在蛋白质数据库中搜索串联质谱数据的软件在速度和统计能力上都有了显著的提高。然而,当被分析的光谱数量或蛋白质数量过大时,现有的工具仍然难以分析真正的海量数据集。在这里,我们描述了对Tide搜索引擎的增强,使其能够在商品硬件上处理包含1000万个光谱的数据集和包含70亿个肽的数据库。我们证明,新的Tide架构比以前的版本快2-7倍,现在在速度上与MSFragger和Sage相当,而需要的内存少得多。Tide是开源的,并且作为Windows、Linux和Mac的预编译二进制文件公开提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast and Memory-Efficient Searching of Large-Scale Mass Spectrometry Data Using Tide

Fast and Memory-Efficient Searching of Large-Scale Mass Spectrometry Data Using Tide

Over the past 30 years, software for searching tandem mass spectrometry data against a protein database has improved dramatically in speed and statistical power. However, existing tools can still struggle to analyze truly massive data sets when either the number of spectra or the number of proteins being analyzed grows too large. Here, we describe enhancements to the Tide search engine that allow it to handle data sets containing >10 million spectra and databases containing >7 billion peptides on commodity hardware. We demonstrate that the new Tide architecture is around 2–7 times faster than the previous version and is now comparable to MSFragger and Sage in speed while requiring much less memory. Tide is open source and is publicly available as precompiled binaries for Windows, Linux, and Mac.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信