Zane T. Laughlin, Liudmyla Arifova, Paola Munoz-Tello, Xiaoyu Yu, Mithun Nag Karadi Giridhar, Jinhui Dong, Joel M. Harp, Di Zhu, Theodore M. Kamenecka and Douglas J. Kojetin*,
{"title":"共价逆激动剂FX-909介导ppar γ转录抑制的结构基础","authors":"Zane T. Laughlin, Liudmyla Arifova, Paola Munoz-Tello, Xiaoyu Yu, Mithun Nag Karadi Giridhar, Jinhui Dong, Joel M. Harp, Di Zhu, Theodore M. Kamenecka and Douglas J. Kojetin*, ","doi":"10.1021/acs.jmedchem.5c01252","DOIUrl":null,"url":null,"abstract":"<p >Hyperactivation of peroxisome proliferator-activated receptor γ-mediated transcription promotes tumor growth in urothelial (bladder) cancer, which can be inhibited by compounds that repress PPARγ activity. FX-909 is a covalent PPARγ inverse agonist in phase 1 clinical trials for advanced solid malignancies, including muscle-invasive bladder cancer. Here, we compared the mechanism of action of FX-909 to other covalent inverse agonists including T0070907, reported more than 20 years ago and misclassified as an antagonist, and two reported improved covalent inverse agonist analogs, SR33068 and BAY-4931. Functional profiling and NMR studies reveal that FX-909 displays improved corepressor-selective inverse agonism and better stabilizes a transcriptionally repressive PPARγ LBD conformation compared to T0070907. The crystal structure of PPARγ LBD cobound to FX-909 and the NCoR1 corepressor peptide reveals a repressive conformation shared by other covalent inverse agonists. These findings build on recent studies highlighting the pharmacological significance and clinical relevance of transcriptionally repressive PPARγ inverse agonists.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"68 16","pages":"17587–17597"},"PeriodicalIF":6.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.5c01252","citationCount":"0","resultStr":"{\"title\":\"Structural Basis of PPARγ-Mediated Transcriptional Repression by the Covalent Inverse Agonist FX-909\",\"authors\":\"Zane T. Laughlin, Liudmyla Arifova, Paola Munoz-Tello, Xiaoyu Yu, Mithun Nag Karadi Giridhar, Jinhui Dong, Joel M. Harp, Di Zhu, Theodore M. Kamenecka and Douglas J. Kojetin*, \",\"doi\":\"10.1021/acs.jmedchem.5c01252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hyperactivation of peroxisome proliferator-activated receptor γ-mediated transcription promotes tumor growth in urothelial (bladder) cancer, which can be inhibited by compounds that repress PPARγ activity. FX-909 is a covalent PPARγ inverse agonist in phase 1 clinical trials for advanced solid malignancies, including muscle-invasive bladder cancer. Here, we compared the mechanism of action of FX-909 to other covalent inverse agonists including T0070907, reported more than 20 years ago and misclassified as an antagonist, and two reported improved covalent inverse agonist analogs, SR33068 and BAY-4931. Functional profiling and NMR studies reveal that FX-909 displays improved corepressor-selective inverse agonism and better stabilizes a transcriptionally repressive PPARγ LBD conformation compared to T0070907. The crystal structure of PPARγ LBD cobound to FX-909 and the NCoR1 corepressor peptide reveals a repressive conformation shared by other covalent inverse agonists. These findings build on recent studies highlighting the pharmacological significance and clinical relevance of transcriptionally repressive PPARγ inverse agonists.</p>\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":\"68 16\",\"pages\":\"17587–17597\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jmedchem.5c01252\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c01252\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.5c01252","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Structural Basis of PPARγ-Mediated Transcriptional Repression by the Covalent Inverse Agonist FX-909
Hyperactivation of peroxisome proliferator-activated receptor γ-mediated transcription promotes tumor growth in urothelial (bladder) cancer, which can be inhibited by compounds that repress PPARγ activity. FX-909 is a covalent PPARγ inverse agonist in phase 1 clinical trials for advanced solid malignancies, including muscle-invasive bladder cancer. Here, we compared the mechanism of action of FX-909 to other covalent inverse agonists including T0070907, reported more than 20 years ago and misclassified as an antagonist, and two reported improved covalent inverse agonist analogs, SR33068 and BAY-4931. Functional profiling and NMR studies reveal that FX-909 displays improved corepressor-selective inverse agonism and better stabilizes a transcriptionally repressive PPARγ LBD conformation compared to T0070907. The crystal structure of PPARγ LBD cobound to FX-909 and the NCoR1 corepressor peptide reveals a repressive conformation shared by other covalent inverse agonists. These findings build on recent studies highlighting the pharmacological significance and clinical relevance of transcriptionally repressive PPARγ inverse agonists.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.