二维范德华CrSBr中的巨磁激子耦合。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-08-13 DOI:10.1021/acsnano.5c00407
Jia Shi, Dan Wang, Nai Jiang, Ziqian Xin, Houzhi Zheng, Chao Shen*, Xinping Zhang* and Xinfeng Liu*, 
{"title":"二维范德华CrSBr中的巨磁激子耦合。","authors":"Jia Shi,&nbsp;Dan Wang,&nbsp;Nai Jiang,&nbsp;Ziqian Xin,&nbsp;Houzhi Zheng,&nbsp;Chao Shen*,&nbsp;Xinping Zhang* and Xinfeng Liu*,&nbsp;","doi":"10.1021/acsnano.5c00407","DOIUrl":null,"url":null,"abstract":"<p >Controlling magnetic order via external fields or heterostructures enables precise manipulation and tracking of spin and exciton information, facilitating the development of high-performance optical spin valves. However, the weak magneto-optical signals and instability of two-dimensional (2D) antiferromagnetic (AFM) materials have hindered comprehensive studies on the coupling between magnetic order and excitons in bulk-like systems. Here, we leverage magneto-optical spectroscopy to provide direct insight into the spin-flip and complex spin-canting behavior in thick-layered CrSBr under nonextreme temperature conditions (80 K). Theoretical calculations reveal that the strong coupling between excitons and magnetic order, especially the 32 meV exciton energy shift during magnetic transitions, stems from the hybridization of Cr and S orbitals and the larger exciton wave function radius of higher-energy B excitons. These findings offer a solid foundation for future exploration of 2D AFM materials in magneto-optical sensors and quantum communication using excitons as spin carriers.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 33","pages":"29977–29987"},"PeriodicalIF":16.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Giant Magneto-Exciton Coupling in 2D van der Waals CrSBr\",\"authors\":\"Jia Shi,&nbsp;Dan Wang,&nbsp;Nai Jiang,&nbsp;Ziqian Xin,&nbsp;Houzhi Zheng,&nbsp;Chao Shen*,&nbsp;Xinping Zhang* and Xinfeng Liu*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c00407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Controlling magnetic order via external fields or heterostructures enables precise manipulation and tracking of spin and exciton information, facilitating the development of high-performance optical spin valves. However, the weak magneto-optical signals and instability of two-dimensional (2D) antiferromagnetic (AFM) materials have hindered comprehensive studies on the coupling between magnetic order and excitons in bulk-like systems. Here, we leverage magneto-optical spectroscopy to provide direct insight into the spin-flip and complex spin-canting behavior in thick-layered CrSBr under nonextreme temperature conditions (80 K). Theoretical calculations reveal that the strong coupling between excitons and magnetic order, especially the 32 meV exciton energy shift during magnetic transitions, stems from the hybridization of Cr and S orbitals and the larger exciton wave function radius of higher-energy B excitons. These findings offer a solid foundation for future exploration of 2D AFM materials in magneto-optical sensors and quantum communication using excitons as spin carriers.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 33\",\"pages\":\"29977–29987\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c00407\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c00407","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过外场或异质结构控制磁序可以精确地操纵和跟踪自旋和激子信息,促进高性能光学自旋阀的发展。然而,二维(2D)反铁磁(AFM)材料的弱磁光信号和不稳定性阻碍了对类体体系中磁序与激子耦合的全面研究。在这里,我们利用磁光谱学来直接洞察厚层CrSBr在非极端温度条件下(80 K)的自旋翻转和复杂的自旋倾斜行为。理论计算表明,激子与磁序之间的强耦合,特别是磁跃迁过程中32 meV激子的能量位移,源于Cr轨道和S轨道的杂化以及高能B激子的较大激子波函数半径。这些发现为未来探索二维AFM材料在磁光传感器和使用激子作为自旋载流子的量子通信中的应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Giant Magneto-Exciton Coupling in 2D van der Waals CrSBr

Giant Magneto-Exciton Coupling in 2D van der Waals CrSBr

Controlling magnetic order via external fields or heterostructures enables precise manipulation and tracking of spin and exciton information, facilitating the development of high-performance optical spin valves. However, the weak magneto-optical signals and instability of two-dimensional (2D) antiferromagnetic (AFM) materials have hindered comprehensive studies on the coupling between magnetic order and excitons in bulk-like systems. Here, we leverage magneto-optical spectroscopy to provide direct insight into the spin-flip and complex spin-canting behavior in thick-layered CrSBr under nonextreme temperature conditions (80 K). Theoretical calculations reveal that the strong coupling between excitons and magnetic order, especially the 32 meV exciton energy shift during magnetic transitions, stems from the hybridization of Cr and S orbitals and the larger exciton wave function radius of higher-energy B excitons. These findings offer a solid foundation for future exploration of 2D AFM materials in magneto-optical sensors and quantum communication using excitons as spin carriers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信