{"title":"加权Sobolev空间上的一些不等式,距离权值和Assouad维","authors":"Fernando López-García, Ignacio Ojea","doi":"10.1002/mana.70014","DOIUrl":null,"url":null,"abstract":"<p>We considercertain inequalities and a related result on weighted Sobolev spaces on bounded John domains in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>${\\mathbb {R}}^n$</annotation>\n </semantics></math>. Namely, we study the existence of a right inverse for the divergence operator, along with the corresponding a priori estimate, the improved and the fractional Poincaré inequalities, the Korn inequality, and the local Fefferman–Stein inequality. All these results are obtained on weighted Sobolev spaces, where the weight is a power of the distance to the boundary. In all cases the exponent of the weight <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <msup>\n <mrow>\n <mo>(</mo>\n <mo>·</mo>\n <mo>,</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>β</mi>\n <mi>p</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$d(\\cdot,\\partial \\Omega)^{\\beta p}$</annotation>\n </semantics></math> is only required to satisfy the restriction: <span></span><math>\n <semantics>\n <mrow>\n <mi>β</mi>\n <mi>p</mi>\n <mo>></mo>\n <mo>−</mo>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <msub>\n <mi>dim</mi>\n <mi>A</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation>$\\beta p>-(n-{\\rm dim}_A(\\partial \\Omega))$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> is the exponent of the Sobolev space and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>dim</mi>\n <mi>A</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\rm dim}_A(\\partial \\Omega)$</annotation>\n </semantics></math> is the Assouad dimension of the boundary of the domain. To the best of our knowledge, this condition is less restrictive than the ones in the literature.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2749-2769"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some inequalities on weighted Sobolev spaces, distance weights, and the Assouad dimension\",\"authors\":\"Fernando López-García, Ignacio Ojea\",\"doi\":\"10.1002/mana.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We considercertain inequalities and a related result on weighted Sobolev spaces on bounded John domains in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>${\\\\mathbb {R}}^n$</annotation>\\n </semantics></math>. Namely, we study the existence of a right inverse for the divergence operator, along with the corresponding a priori estimate, the improved and the fractional Poincaré inequalities, the Korn inequality, and the local Fefferman–Stein inequality. All these results are obtained on weighted Sobolev spaces, where the weight is a power of the distance to the boundary. In all cases the exponent of the weight <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <msup>\\n <mrow>\\n <mo>(</mo>\\n <mo>·</mo>\\n <mo>,</mo>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mi>β</mi>\\n <mi>p</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$d(\\\\cdot,\\\\partial \\\\Omega)^{\\\\beta p}$</annotation>\\n </semantics></math> is only required to satisfy the restriction: <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>β</mi>\\n <mi>p</mi>\\n <mo>></mo>\\n <mo>−</mo>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <msub>\\n <mi>dim</mi>\\n <mi>A</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\beta p>-(n-{\\\\rm dim}_A(\\\\partial \\\\Omega))$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> is the exponent of the Sobolev space and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>dim</mi>\\n <mi>A</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>∂</mi>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>${\\\\rm dim}_A(\\\\partial \\\\Omega)$</annotation>\\n </semantics></math> is the Assouad dimension of the boundary of the domain. To the best of our knowledge, this condition is less restrictive than the ones in the literature.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2749-2769\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70014\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70014","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
研究了rn中有界John域上加权Sobolev空间上的若干不等式及其相关结果${\mathbb {R}}^n$。也就是说,我们研究了散度算子的右逆的存在性,以及相应的先验估计、改进的和分数的poincar不等式、Korn不等式和局部的Fefferman-Stein不等式。所有这些结果都是在加权Sobolev空间上得到的,其中权重是到边界距离的幂。在所有情况下,权值d(·,∂Ω) β p $d(\cdot,\partial \Omega)^{\beta p}$只需要满足限制:β p &gt;−(n−dim A(∂Ω)) $\beta p>-(n-{\rm dim}_A(\partial \Omega))$,其中p $p$是Sobolev空间的指数,而dim A(∂Ω) ${\rm dim}_A(\partial \Omega)$是域边界的assad维。据我们所知,这种情况没有文献中描述的那么严格。
Some inequalities on weighted Sobolev spaces, distance weights, and the Assouad dimension
We considercertain inequalities and a related result on weighted Sobolev spaces on bounded John domains in . Namely, we study the existence of a right inverse for the divergence operator, along with the corresponding a priori estimate, the improved and the fractional Poincaré inequalities, the Korn inequality, and the local Fefferman–Stein inequality. All these results are obtained on weighted Sobolev spaces, where the weight is a power of the distance to the boundary. In all cases the exponent of the weight is only required to satisfy the restriction: , where is the exponent of the Sobolev space and is the Assouad dimension of the boundary of the domain. To the best of our knowledge, this condition is less restrictive than the ones in the literature.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index