分数阶trace-dev-div不等式

IF 0.8 3区 数学 Q2 MATHEMATICS
C. Carstensen, N. Heuer
{"title":"分数阶trace-dev-div不等式","authors":"C. Carstensen,&nbsp;N. Heuer","doi":"10.1002/mana.70003","DOIUrl":null,"url":null,"abstract":"<p>The trace-dev-div inequality in <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>s</mi>\n </msup>\n <annotation>$H^s$</annotation>\n </semantics></math> controls the trace in the norm of <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mi>s</mi>\n </msup>\n <annotation>$H^s$</annotation>\n </semantics></math> by that of the deviatoric part plus the <span></span><math>\n <semantics>\n <msup>\n <mi>H</mi>\n <mrow>\n <mi>s</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <annotation>$H^{s-1}$</annotation>\n </semantics></math> norm of the divergence of a quadratic tensor field different from the constant unit matrix. This is well known for <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$s=0$</annotation>\n </semantics></math> and established for orders <span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>≤</mo>\n <mi>s</mi>\n <mo>≤</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$0\\le s\\le 1$</annotation>\n </semantics></math> and arbitrary space dimension in this paper. For mixed and least-squares finite element error analysis in linear elasticity, this inequality allows to establish robustness with respect to the Lamé parameter <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2493-2498"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70003","citationCount":"0","resultStr":"{\"title\":\"A fractional-order trace-dev-div inequality\",\"authors\":\"C. Carstensen,&nbsp;N. Heuer\",\"doi\":\"10.1002/mana.70003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The trace-dev-div inequality in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>s</mi>\\n </msup>\\n <annotation>$H^s$</annotation>\\n </semantics></math> controls the trace in the norm of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mi>s</mi>\\n </msup>\\n <annotation>$H^s$</annotation>\\n </semantics></math> by that of the deviatoric part plus the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>H</mi>\\n <mrow>\\n <mi>s</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <annotation>$H^{s-1}$</annotation>\\n </semantics></math> norm of the divergence of a quadratic tensor field different from the constant unit matrix. This is well known for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$s=0$</annotation>\\n </semantics></math> and established for orders <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>≤</mo>\\n <mi>s</mi>\\n <mo>≤</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$0\\\\le s\\\\le 1$</annotation>\\n </semantics></math> and arbitrary space dimension in this paper. For mixed and least-squares finite element error analysis in linear elasticity, this inequality allows to establish robustness with respect to the Lamé parameter <span></span><math>\\n <semantics>\\n <mi>λ</mi>\\n <annotation>$\\\\lambda$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2493-2498\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70003\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70003","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

H s $H^s$中的迹迹-发展-分割不等式通过偏差部分的迹迹加上H s来控制H s $H^s$范数中的迹迹−1 $H^{s-1}$不同于常数单位矩阵的二次张量场的散度范数。这在s = 0 $s=0$时是已知的,在本文中对于阶数0≤s≤1 $0\le s\le 1$和任意空间维数都是成立的。对于线性弹性的混合和最小二乘有限元误差分析,该不等式允许建立关于lam参数λ $\lambda$的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fractional-order trace-dev-div inequality

The trace-dev-div inequality in H s $H^s$ controls the trace in the norm of H s $H^s$ by that of the deviatoric part plus the H s 1 $H^{s-1}$ norm of the divergence of a quadratic tensor field different from the constant unit matrix. This is well known for s = 0 $s=0$ and established for orders 0 s 1 $0\le s\le 1$ and arbitrary space dimension in this paper. For mixed and least-squares finite element error analysis in linear elasticity, this inequality allows to establish robustness with respect to the Lamé parameter λ $\lambda$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信