{"title":"间充质干细胞细胞外小泡规模化生产的一步冷冻干燥策略","authors":"Yashvi Sharma, Meenakshi Mendiratta, Suchi Gupta, Sonali Rawat, Pardeep Kumar Vaishnav, Sujata Mohanty","doi":"10.1002/adtp.202500121","DOIUrl":null,"url":null,"abstract":"<p>The clinical translation of mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) holds immense promise due to their regenerative and immunomodulatory properties. However, their widespread application is hindered by challenges in storage, stability, and cold chain transport. In this study, it is explored lyophilisation as a strategy to extend the shelf life of MSC-sEV while maintaining their structural integrity and biological functionality. Lyophilised sEV are stored at four different temperatures—room temperature (RT), 4, −20°C, and −80 °C—for durations of 1, 3, and 6 months. This findings reveal that normal refrigeration temperature of 4 °C storage is suitable for maintaining sEV stability for up to 1 month, while −20°C and −80 °C are more effective for longer durations, preserving sEV integrity and functionality for 6 months and beyond. These results underscore the importance of optimizing storage protocols for lyophilised MSC-sEV to ensure their viability for clinical and research applications. This study establishes a foundation for improved storage and cold chain transport of MSC-sEV, paving the way for their integration into scalable and standardized therapeutic platforms.</p>","PeriodicalId":7284,"journal":{"name":"Advanced Therapeutics","volume":"8 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Step Freeze Drying Strategy for Scalable Production of Small Extracellular Vesicles Derived From Mesenchymal Stem Cells\",\"authors\":\"Yashvi Sharma, Meenakshi Mendiratta, Suchi Gupta, Sonali Rawat, Pardeep Kumar Vaishnav, Sujata Mohanty\",\"doi\":\"10.1002/adtp.202500121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The clinical translation of mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) holds immense promise due to their regenerative and immunomodulatory properties. However, their widespread application is hindered by challenges in storage, stability, and cold chain transport. In this study, it is explored lyophilisation as a strategy to extend the shelf life of MSC-sEV while maintaining their structural integrity and biological functionality. Lyophilised sEV are stored at four different temperatures—room temperature (RT), 4, −20°C, and −80 °C—for durations of 1, 3, and 6 months. This findings reveal that normal refrigeration temperature of 4 °C storage is suitable for maintaining sEV stability for up to 1 month, while −20°C and −80 °C are more effective for longer durations, preserving sEV integrity and functionality for 6 months and beyond. These results underscore the importance of optimizing storage protocols for lyophilised MSC-sEV to ensure their viability for clinical and research applications. This study establishes a foundation for improved storage and cold chain transport of MSC-sEV, paving the way for their integration into scalable and standardized therapeutic platforms.</p>\",\"PeriodicalId\":7284,\"journal\":{\"name\":\"Advanced Therapeutics\",\"volume\":\"8 8\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adtp.202500121\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adtp.202500121","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
One-Step Freeze Drying Strategy for Scalable Production of Small Extracellular Vesicles Derived From Mesenchymal Stem Cells
The clinical translation of mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) holds immense promise due to their regenerative and immunomodulatory properties. However, their widespread application is hindered by challenges in storage, stability, and cold chain transport. In this study, it is explored lyophilisation as a strategy to extend the shelf life of MSC-sEV while maintaining their structural integrity and biological functionality. Lyophilised sEV are stored at four different temperatures—room temperature (RT), 4, −20°C, and −80 °C—for durations of 1, 3, and 6 months. This findings reveal that normal refrigeration temperature of 4 °C storage is suitable for maintaining sEV stability for up to 1 month, while −20°C and −80 °C are more effective for longer durations, preserving sEV integrity and functionality for 6 months and beyond. These results underscore the importance of optimizing storage protocols for lyophilised MSC-sEV to ensure their viability for clinical and research applications. This study establishes a foundation for improved storage and cold chain transport of MSC-sEV, paving the way for their integration into scalable and standardized therapeutic platforms.