Marie Ronnander, Anthony G. Dodge, Erin O'Neal, Caroline Pauls, Jack Hanson, James K. Christenson, Lawrence P. Wackett
{"title":"α-卤代羧酸连续分光光度法测定脱氟酶和脱氯酶活性","authors":"Marie Ronnander, Anthony G. Dodge, Erin O'Neal, Caroline Pauls, Jack Hanson, James K. Christenson, Lawrence P. Wackett","doi":"10.1111/1751-7915.70216","DOIUrl":null,"url":null,"abstract":"<p>Many environmental pollutants have a fluorine or chlorine atom on a carbon atom adjacent to a carboxylic acid. These α-halocarboxylic acids include heavily regulated compounds such as per- and polyfluorinated substances (PFAS). Due to PFAS persistence in the environment, there is intense interest in characterising the biodegradation of α-halocarboxylic acids. Their initial biodegradation often proceeds via defluorinase enzymes that catalyse hydrolytic removal of <i>alpha</i> fluorine or chlorine atoms. These enzymes can dehalogenate both mono-halocarboxylate and dihalocarboxylate substrates, generating α-hydroxy and α-ketocarboxylic acid products, respectively. To enable continuous monitoring of defluorinase activity, we identified, purified and optimised dehydrogenases from <i>Limosilactobacillus fermentum</i> JN248 and <i>Enterococcus faecium</i> IAM10071 that reacted with the specific α-hydroxy and α-ketocarboxylic acid products of the defluorinases. The dehydrogenases make or consume NADH, measured by absorbance readings at 340 nm, thus allowing continuous measurement of defluorinase activity using a spectrophotometer. Using the coupled assay, purified defluorinases from a <i>Delftia</i> sp. and a <i>Dechloromonas</i> sp. were compared with respect to substrate specificity. The <i>Delftia</i> defluorinase demonstrated superior activity with most substrates, including difluoroacetate. To our knowledge, this is the first report of a coupled-enzyme continuous assay method for enzymes that catalyse the hydrolysis of α-halocarboxylic acids.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 8","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70216","citationCount":"0","resultStr":"{\"title\":\"Continuous Spectrophotometric Assay for Defluorinase and Dechlorinase Activities With α-Halocarboxylic Acids\",\"authors\":\"Marie Ronnander, Anthony G. Dodge, Erin O'Neal, Caroline Pauls, Jack Hanson, James K. Christenson, Lawrence P. Wackett\",\"doi\":\"10.1111/1751-7915.70216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many environmental pollutants have a fluorine or chlorine atom on a carbon atom adjacent to a carboxylic acid. These α-halocarboxylic acids include heavily regulated compounds such as per- and polyfluorinated substances (PFAS). Due to PFAS persistence in the environment, there is intense interest in characterising the biodegradation of α-halocarboxylic acids. Their initial biodegradation often proceeds via defluorinase enzymes that catalyse hydrolytic removal of <i>alpha</i> fluorine or chlorine atoms. These enzymes can dehalogenate both mono-halocarboxylate and dihalocarboxylate substrates, generating α-hydroxy and α-ketocarboxylic acid products, respectively. To enable continuous monitoring of defluorinase activity, we identified, purified and optimised dehydrogenases from <i>Limosilactobacillus fermentum</i> JN248 and <i>Enterococcus faecium</i> IAM10071 that reacted with the specific α-hydroxy and α-ketocarboxylic acid products of the defluorinases. The dehydrogenases make or consume NADH, measured by absorbance readings at 340 nm, thus allowing continuous measurement of defluorinase activity using a spectrophotometer. Using the coupled assay, purified defluorinases from a <i>Delftia</i> sp. and a <i>Dechloromonas</i> sp. were compared with respect to substrate specificity. The <i>Delftia</i> defluorinase demonstrated superior activity with most substrates, including difluoroacetate. To our knowledge, this is the first report of a coupled-enzyme continuous assay method for enzymes that catalyse the hydrolysis of α-halocarboxylic acids.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 8\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70216\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70216\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://enviromicro-journals.onlinelibrary.wiley.com/doi/10.1111/1751-7915.70216","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous Spectrophotometric Assay for Defluorinase and Dechlorinase Activities With α-Halocarboxylic Acids
Many environmental pollutants have a fluorine or chlorine atom on a carbon atom adjacent to a carboxylic acid. These α-halocarboxylic acids include heavily regulated compounds such as per- and polyfluorinated substances (PFAS). Due to PFAS persistence in the environment, there is intense interest in characterising the biodegradation of α-halocarboxylic acids. Their initial biodegradation often proceeds via defluorinase enzymes that catalyse hydrolytic removal of alpha fluorine or chlorine atoms. These enzymes can dehalogenate both mono-halocarboxylate and dihalocarboxylate substrates, generating α-hydroxy and α-ketocarboxylic acid products, respectively. To enable continuous monitoring of defluorinase activity, we identified, purified and optimised dehydrogenases from Limosilactobacillus fermentum JN248 and Enterococcus faecium IAM10071 that reacted with the specific α-hydroxy and α-ketocarboxylic acid products of the defluorinases. The dehydrogenases make or consume NADH, measured by absorbance readings at 340 nm, thus allowing continuous measurement of defluorinase activity using a spectrophotometer. Using the coupled assay, purified defluorinases from a Delftia sp. and a Dechloromonas sp. were compared with respect to substrate specificity. The Delftia defluorinase demonstrated superior activity with most substrates, including difluoroacetate. To our knowledge, this is the first report of a coupled-enzyme continuous assay method for enzymes that catalyse the hydrolysis of α-halocarboxylic acids.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes