Faezeh Shirmohammadi, Deyan Draganov, Johno van IJsseldijk, Ranajit Ghose, Jan Thorbecke, Eric Verschuur, Kees Wapenaar
{"title":"基于marchenko的隔震方法在陆地s波地震数据集中的应用","authors":"Faezeh Shirmohammadi, Deyan Draganov, Johno van IJsseldijk, Ranajit Ghose, Jan Thorbecke, Eric Verschuur, Kees Wapenaar","doi":"10.1111/1365-2478.70064","DOIUrl":null,"url":null,"abstract":"<p>The overburden structures often can distort the responses of the target region in seismic data, especially in land datasets. Ideally, all effects of the overburden and underburden structures should be removed, leaving only the responses of the target region. This can be achieved using the Marchenko method. The Marchenko method is capable of estimating Green's functions between the surface of the Earth and arbitrary locations in the subsurface. These Green's functions can then be used to redatum wavefields to a level in the subsurface. As a result, the Marchenko method enables the isolation of the response of a specific layer or package of layers, free from the influence of the overburden and underburden. In this study, we apply the Marchenko-based isolation technique to land S-wave seismic data acquired in the Groningen province, the Netherlands. We apply the technique for combined removal of the overburden and underburden, which leaves the isolated response of the target region, which is selected between 30 and 270 m depth. Our results indicate that this approach enhances the resolution of reflection data. These enhanced reflections can be utilised for imaging and monitoring applications.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70064","citationCount":"0","resultStr":"{\"title\":\"Application of Marchenko-Based Isolation to a Land S-Wave Seismic Dataset\",\"authors\":\"Faezeh Shirmohammadi, Deyan Draganov, Johno van IJsseldijk, Ranajit Ghose, Jan Thorbecke, Eric Verschuur, Kees Wapenaar\",\"doi\":\"10.1111/1365-2478.70064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The overburden structures often can distort the responses of the target region in seismic data, especially in land datasets. Ideally, all effects of the overburden and underburden structures should be removed, leaving only the responses of the target region. This can be achieved using the Marchenko method. The Marchenko method is capable of estimating Green's functions between the surface of the Earth and arbitrary locations in the subsurface. These Green's functions can then be used to redatum wavefields to a level in the subsurface. As a result, the Marchenko method enables the isolation of the response of a specific layer or package of layers, free from the influence of the overburden and underburden. In this study, we apply the Marchenko-based isolation technique to land S-wave seismic data acquired in the Groningen province, the Netherlands. We apply the technique for combined removal of the overburden and underburden, which leaves the isolated response of the target region, which is selected between 30 and 270 m depth. Our results indicate that this approach enhances the resolution of reflection data. These enhanced reflections can be utilised for imaging and monitoring applications.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"73 6\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70064\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70064\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70064","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Application of Marchenko-Based Isolation to a Land S-Wave Seismic Dataset
The overburden structures often can distort the responses of the target region in seismic data, especially in land datasets. Ideally, all effects of the overburden and underburden structures should be removed, leaving only the responses of the target region. This can be achieved using the Marchenko method. The Marchenko method is capable of estimating Green's functions between the surface of the Earth and arbitrary locations in the subsurface. These Green's functions can then be used to redatum wavefields to a level in the subsurface. As a result, the Marchenko method enables the isolation of the response of a specific layer or package of layers, free from the influence of the overburden and underburden. In this study, we apply the Marchenko-based isolation technique to land S-wave seismic data acquired in the Groningen province, the Netherlands. We apply the technique for combined removal of the overburden and underburden, which leaves the isolated response of the target region, which is selected between 30 and 270 m depth. Our results indicate that this approach enhances the resolution of reflection data. These enhanced reflections can be utilised for imaging and monitoring applications.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.