{"title":"具有超临界凹凸非线性的kirchhoff型方程的正解","authors":"Liying Shan, Wei Shuai","doi":"10.1002/mana.70002","DOIUrl":null,"url":null,"abstract":"<p>We study the following Kirchhoff-type equation\n\n </p><p>Via a new variational principle established by Moameni (C. R. Math. Acad. Sci. Paris. <b>355</b> (2017) 1236–1241), we shall show that, for each <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>></mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p>2$</annotation>\n </semantics></math>, there exists <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>λ</mi>\n <mo>∗</mo>\n </msup>\n <mo>></mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\lambda ^*>0$</annotation>\n </semantics></math> such that for each <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <msup>\n <mi>λ</mi>\n <mo>∗</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\lambda \\in (0,\\lambda ^*)$</annotation>\n </semantics></math> Equation (0.1) has a positive solution with negative energy. Furthermore, by using the improved Clark theorem, we can obtain a sequence of solutions with negative energy converging to zero in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\infty }(\\Omega)$</annotation>\n </semantics></math> without the restriction of <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2476-2492"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive solution for the Kirchhoff-type equation with supercritical concave and convex nonlinearities\",\"authors\":\"Liying Shan, Wei Shuai\",\"doi\":\"10.1002/mana.70002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the following Kirchhoff-type equation\\n\\n </p><p>Via a new variational principle established by Moameni (C. R. Math. Acad. Sci. Paris. <b>355</b> (2017) 1236–1241), we shall show that, for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>></mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$p>2$</annotation>\\n </semantics></math>, there exists <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>λ</mi>\\n <mo>∗</mo>\\n </msup>\\n <mo>></mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\lambda ^*>0$</annotation>\\n </semantics></math> such that for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>∈</mo>\\n <mo>(</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>λ</mi>\\n <mo>∗</mo>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$\\\\lambda \\\\in (0,\\\\lambda ^*)$</annotation>\\n </semantics></math> Equation (0.1) has a positive solution with negative energy. Furthermore, by using the improved Clark theorem, we can obtain a sequence of solutions with negative energy converging to zero in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>∞</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^{\\\\infty }(\\\\Omega)$</annotation>\\n </semantics></math> without the restriction of <span></span><math>\\n <semantics>\\n <mi>λ</mi>\\n <annotation>$\\\\lambda$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2476-2492\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70002\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Positive solution for the Kirchhoff-type equation with supercritical concave and convex nonlinearities
We study the following Kirchhoff-type equation
Via a new variational principle established by Moameni (C. R. Math. Acad. Sci. Paris. 355 (2017) 1236–1241), we shall show that, for each , there exists such that for each Equation (0.1) has a positive solution with negative energy. Furthermore, by using the improved Clark theorem, we can obtain a sequence of solutions with negative energy converging to zero in without the restriction of .
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index