Liwei Zhang, Weilin Liao, Xuan Chen, Shanjun Cheng, Jiachuan Yang
{"title":"中国大陆复合热浪及其与城市热岛的相互作用","authors":"Liwei Zhang, Weilin Liao, Xuan Chen, Shanjun Cheng, Jiachuan Yang","doi":"10.1029/2025EF006490","DOIUrl":null,"url":null,"abstract":"<p>Temporally compound heatwaves (CHWs), two consecutive heatwaves (HWs) with an intermittent cool break between them, are projected to occur more frequently under a warming globe. However, their spatiotemporal characteristics and interaction with urban heat island (UHI) are unexplored at the continental scale. Using observational data from over 2000 ground-based stations over China, we find that CHWs constitute an increasing portion of HW hazard from 1961 to 2021. The increasing trend is especially evident when using the daily minimum temperature to define hot days, suggesting an aggravated thermal environment at night. Urban-rural contrast of CHW trends illustrates that urbanization contributes substantially to the increased frequency of CHWs in cities, especially in southern China. Results show that mean UHI intensity (UHII) tends to weaken under HW and CHW conditions, which correlates with increased pressure and reduced precipitation. During CHW events, UHII reduces during cool break due to enhanced evaporative cooling in urban areas under precipitation. The interaction between UHI and HW is subject to change with background climate, which is positive for dry regions and negative for wet regions. This study provides insights into CHW evolution over mainland China and demonstrates the need for heat mitigation strategies under climate change.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 8","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EF006490","citationCount":"0","resultStr":"{\"title\":\"Temporally Compound Heatwave and Its Interaction With Urban Heat Island Over Mainland China\",\"authors\":\"Liwei Zhang, Weilin Liao, Xuan Chen, Shanjun Cheng, Jiachuan Yang\",\"doi\":\"10.1029/2025EF006490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Temporally compound heatwaves (CHWs), two consecutive heatwaves (HWs) with an intermittent cool break between them, are projected to occur more frequently under a warming globe. However, their spatiotemporal characteristics and interaction with urban heat island (UHI) are unexplored at the continental scale. Using observational data from over 2000 ground-based stations over China, we find that CHWs constitute an increasing portion of HW hazard from 1961 to 2021. The increasing trend is especially evident when using the daily minimum temperature to define hot days, suggesting an aggravated thermal environment at night. Urban-rural contrast of CHW trends illustrates that urbanization contributes substantially to the increased frequency of CHWs in cities, especially in southern China. Results show that mean UHI intensity (UHII) tends to weaken under HW and CHW conditions, which correlates with increased pressure and reduced precipitation. During CHW events, UHII reduces during cool break due to enhanced evaporative cooling in urban areas under precipitation. The interaction between UHI and HW is subject to change with background climate, which is positive for dry regions and negative for wet regions. This study provides insights into CHW evolution over mainland China and demonstrates the need for heat mitigation strategies under climate change.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"13 8\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EF006490\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025EF006490\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025EF006490","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Temporally Compound Heatwave and Its Interaction With Urban Heat Island Over Mainland China
Temporally compound heatwaves (CHWs), two consecutive heatwaves (HWs) with an intermittent cool break between them, are projected to occur more frequently under a warming globe. However, their spatiotemporal characteristics and interaction with urban heat island (UHI) are unexplored at the continental scale. Using observational data from over 2000 ground-based stations over China, we find that CHWs constitute an increasing portion of HW hazard from 1961 to 2021. The increasing trend is especially evident when using the daily minimum temperature to define hot days, suggesting an aggravated thermal environment at night. Urban-rural contrast of CHW trends illustrates that urbanization contributes substantially to the increased frequency of CHWs in cities, especially in southern China. Results show that mean UHI intensity (UHII) tends to weaken under HW and CHW conditions, which correlates with increased pressure and reduced precipitation. During CHW events, UHII reduces during cool break due to enhanced evaporative cooling in urban areas under precipitation. The interaction between UHI and HW is subject to change with background climate, which is positive for dry regions and negative for wet regions. This study provides insights into CHW evolution over mainland China and demonstrates the need for heat mitigation strategies under climate change.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.