Stiefel流形上的齐次Einstein和Einstein - randers度量

IF 0.8 3区 数学 Q2 MATHEMATICS
Marina Statha
{"title":"Stiefel流形上的齐次Einstein和Einstein - randers度量","authors":"Marina Statha","doi":"10.1002/mana.70009","DOIUrl":null,"url":null,"abstract":"<p>We study invariant Einstein metrics and Einstein–Randers metrics on the Stiefel manifold <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mi>k</mi>\n </msub>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mo>=</mo>\n <mi>SO</mi>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>/</mo>\n <mi>SO</mi>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$V_k\\mathbb {R}^n={\\mathsf {SO}}(n)/{\\mathsf {SO}}(n-k)$</annotation>\n </semantics></math>. We use a characterization for (nonflat) homogeneous Einstein–Randers metrics as pairs of (nonflat) homogeneous Einstein metrics and invariant Killing vector fields. It is well known that, for Stiefel manifolds the isotropy representation contains equivalent summands, so a complete description of invariant metrics is difficult. We prove, by assuming additional symmetries, that the Stiefel manifolds <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mi>k</mi>\n </mrow>\n </msub>\n <msup>\n <mi>R</mi>\n <mrow>\n <mn>1</mn>\n <mo>+</mo>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n </msup>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>&gt;</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$V_{1+k}\\mathbb {R}^{1+2k} \\ (k &gt; 2)$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mn>6</mn>\n </msub>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>8</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$V_{6}\\mathbb {R}^n \\ (n\\ge 8)$</annotation>\n </semantics></math> admit at least four and six invariant Einstein metrics, respectively. Two of them are Jensen's metrics and the other two and four are new metrics. Also, we prove that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mn>1</mn>\n </msub>\n <mo>+</mo>\n <msub>\n <mi>ℓ</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n </msub>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$V_{\\ell _1+\\ell _2}\\mathbb {R}^n$</annotation>\n </semantics></math> admit at least two invariant Einstein metrics, which are Jensen's metrics. Finally, we show that the previous mentioned Stiefel manifolds and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>V</mi>\n <mn>5</mn>\n </msub>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>7</mn>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$V_5\\mathbb {R}^n \\ (n\\ge 7)$</annotation>\n </semantics></math> admit a certain number of non–Riemmanian Einstein–Randers metrics.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2652-2674"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneous Einstein and Einstein–Randers metrics on Stiefel manifolds\",\"authors\":\"Marina Statha\",\"doi\":\"10.1002/mana.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study invariant Einstein metrics and Einstein–Randers metrics on the Stiefel manifold <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>V</mi>\\n <mi>k</mi>\\n </msub>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mo>=</mo>\\n <mi>SO</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>/</mo>\\n <mi>SO</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$V_k\\\\mathbb {R}^n={\\\\mathsf {SO}}(n)/{\\\\mathsf {SO}}(n-k)$</annotation>\\n </semantics></math>. We use a characterization for (nonflat) homogeneous Einstein–Randers metrics as pairs of (nonflat) homogeneous Einstein metrics and invariant Killing vector fields. It is well known that, for Stiefel manifolds the isotropy representation contains equivalent summands, so a complete description of invariant metrics is difficult. We prove, by assuming additional symmetries, that the Stiefel manifolds <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>V</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <msup>\\n <mi>R</mi>\\n <mrow>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mn>2</mn>\\n <mi>k</mi>\\n </mrow>\\n </msup>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>&gt;</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$V_{1+k}\\\\mathbb {R}^{1+2k} \\\\ (k &gt; 2)$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>V</mi>\\n <mn>6</mn>\\n </msub>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>8</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$V_{6}\\\\mathbb {R}^n \\\\ (n\\\\ge 8)$</annotation>\\n </semantics></math> admit at least four and six invariant Einstein metrics, respectively. Two of them are Jensen's metrics and the other two and four are new metrics. Also, we prove that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>V</mi>\\n <mrow>\\n <msub>\\n <mi>ℓ</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>+</mo>\\n <msub>\\n <mi>ℓ</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </msub>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n </mrow>\\n <annotation>$V_{\\\\ell _1+\\\\ell _2}\\\\mathbb {R}^n$</annotation>\\n </semantics></math> admit at least two invariant Einstein metrics, which are Jensen's metrics. Finally, we show that the previous mentioned Stiefel manifolds and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>V</mi>\\n <mn>5</mn>\\n </msub>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>7</mn>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$V_5\\\\mathbb {R}^n \\\\ (n\\\\ge 7)$</annotation>\\n </semantics></math> admit a certain number of non–Riemmanian Einstein–Randers metrics.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2652-2674\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70009\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70009","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Stiefel流形V k R n = SO (n) / SO (n−k)$ V_k\mathbb {R}^n={\mathsf {SO}}(n)/{\mathsf {SO}}(n-k)$。我们将(非平坦)齐次爱因斯坦-兰德斯度量描述为(非平坦)齐次爱因斯坦度量和不变杀伤向量场对。众所周知,对于Stiefel流形,各向同性表示包含等价和,因此对不变度量的完整描述是困难的。我们通过假设额外的对称性来证明,Stiefel流形v1 + k r1 + 2k (k & gt;2) $V_{1+k}\mathbb {R}^{1+2k} \ (k >;2)$和v6r n (n≥8)$ V_{6}\mathbb {R}^n \ (n\ge 8)$承认至少四个和六个不变爱因斯坦度量,分别。其中两个是Jensen的参数,另外两个和四个是新参数。同时,我们证明了v1 + 2r n $V_{\ well _1+\ well_2}\mathbb {R}^n$承认至少两个不变的爱因斯坦度量,它们是詹森度量。最后,我们证明了前面提到的Stiefel流形和v5r n (n≥7)$ V_5\mathbb {R}^n \ (n\ge 7)$承认一定非黎曼爱因斯坦兰德度量的数目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneous Einstein and Einstein–Randers metrics on Stiefel manifolds

We study invariant Einstein metrics and Einstein–Randers metrics on the Stiefel manifold V k R n = SO ( n ) / SO ( n k ) $V_k\mathbb {R}^n={\mathsf {SO}}(n)/{\mathsf {SO}}(n-k)$ . We use a characterization for (nonflat) homogeneous Einstein–Randers metrics as pairs of (nonflat) homogeneous Einstein metrics and invariant Killing vector fields. It is well known that, for Stiefel manifolds the isotropy representation contains equivalent summands, so a complete description of invariant metrics is difficult. We prove, by assuming additional symmetries, that the Stiefel manifolds V 1 + k R 1 + 2 k ( k > 2 ) $V_{1+k}\mathbb {R}^{1+2k} \ (k > 2)$ and V 6 R n ( n 8 ) $V_{6}\mathbb {R}^n \ (n\ge 8)$ admit at least four and six invariant Einstein metrics, respectively. Two of them are Jensen's metrics and the other two and four are new metrics. Also, we prove that V 1 + 2 R n $V_{\ell _1+\ell _2}\mathbb {R}^n$ admit at least two invariant Einstein metrics, which are Jensen's metrics. Finally, we show that the previous mentioned Stiefel manifolds and V 5 R n ( n 7 ) $V_5\mathbb {R}^n \ (n\ge 7)$ admit a certain number of non–Riemmanian Einstein–Randers metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信