多卫星测量协同填补全球XCO2的空白

IF 3.4 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Jonghyuk Lee, Sujong Jeong, Young Jun Kim, Soona Roh, Jiyeon Kim, Hyungah Jin
{"title":"多卫星测量协同填补全球XCO2的空白","authors":"Jonghyuk Lee,&nbsp;Sujong Jeong,&nbsp;Young Jun Kim,&nbsp;Soona Roh,&nbsp;Jiyeon Kim,&nbsp;Hyungah Jin","doi":"10.1029/2024JD042809","DOIUrl":null,"url":null,"abstract":"<p>Accurate monitoring of atmospheric carbon dioxide (CO<sub>2</sub>) concentrations is essential for understanding the global carbon cycle. Satellite remote sensing enables global-scale CO<sub>2</sub> monitoring, providing column-averaged dry air mole fractions of CO<sub>2</sub> (XCO<sub>2</sub>). Current missions such as the Orbiting Carbon Observatory-2 (OCO-2) and Greenhouse gases Observing SATellite (GOSAT) series provide high-quality XCO<sub>2</sub> but have many observation gaps because of narrow swath widths or cloud interference. To address this, we first propose a machine learning (ML) approach to estimate daily XCO<sub>2</sub> (ML XCO<sub>2</sub>) at a 0.25<span></span><math>\n <semantics>\n <mrow>\n <mo>°</mo>\n </mrow>\n <annotation> ${}^{\\circ}$</annotation>\n </semantics></math> resolution using OCO-2, Sentinel-5 Precursor TROPOspheric Monitoring Instrument, and ERA5 reanalysis data from May 2018 to December 2023. Validation against the Total Carbon Column Observing Network measurements shows high agreement, with an <i>R</i><sup>2</sup> of 0.95, a root mean square error of 1.05 ppm, and a mean absolute error of 0.78 ppm. The spatiotemporal variations in ML XCO<sub>2</sub> are generally consistent with OCO-2, GOSAT, and the Copernicus Atmospheric Monitoring Service (CAMS) XCO<sub>2</sub>. Notably, during the Coronavirus disease 2019 (COVID-19) pandemic in 2020, ML XCO<sub>2</sub> estimates were more consistent with OCO-2 and GOSAT XCO<sub>2</sub> than CAMS XCO<sub>2</sub>, which was overestimated owing to unadjusted COVID-19-related CO<sub>2</sub> emission reductions. The annual mean CO<sub>2</sub> growth rates from ML XCO<sub>2</sub> (2.065–2.735 ppm/year, 2019–2023) also agree with estimates from OCO-2 and the National Oceanic and Atmospheric Administration surface measurements, indicating the robustness of our approach. Our study demonstrates that the synergy between multiple-satellite measurements enhances the spatial coverage of XCO<sub>2</sub> and improves our understanding of the global carbon cycle.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 16","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042809","citationCount":"0","resultStr":"{\"title\":\"Synergy of Multiple-Satellite Measurements to Fill the Gap of Global XCO2\",\"authors\":\"Jonghyuk Lee,&nbsp;Sujong Jeong,&nbsp;Young Jun Kim,&nbsp;Soona Roh,&nbsp;Jiyeon Kim,&nbsp;Hyungah Jin\",\"doi\":\"10.1029/2024JD042809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate monitoring of atmospheric carbon dioxide (CO<sub>2</sub>) concentrations is essential for understanding the global carbon cycle. Satellite remote sensing enables global-scale CO<sub>2</sub> monitoring, providing column-averaged dry air mole fractions of CO<sub>2</sub> (XCO<sub>2</sub>). Current missions such as the Orbiting Carbon Observatory-2 (OCO-2) and Greenhouse gases Observing SATellite (GOSAT) series provide high-quality XCO<sub>2</sub> but have many observation gaps because of narrow swath widths or cloud interference. To address this, we first propose a machine learning (ML) approach to estimate daily XCO<sub>2</sub> (ML XCO<sub>2</sub>) at a 0.25<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>°</mo>\\n </mrow>\\n <annotation> ${}^{\\\\circ}$</annotation>\\n </semantics></math> resolution using OCO-2, Sentinel-5 Precursor TROPOspheric Monitoring Instrument, and ERA5 reanalysis data from May 2018 to December 2023. Validation against the Total Carbon Column Observing Network measurements shows high agreement, with an <i>R</i><sup>2</sup> of 0.95, a root mean square error of 1.05 ppm, and a mean absolute error of 0.78 ppm. The spatiotemporal variations in ML XCO<sub>2</sub> are generally consistent with OCO-2, GOSAT, and the Copernicus Atmospheric Monitoring Service (CAMS) XCO<sub>2</sub>. Notably, during the Coronavirus disease 2019 (COVID-19) pandemic in 2020, ML XCO<sub>2</sub> estimates were more consistent with OCO-2 and GOSAT XCO<sub>2</sub> than CAMS XCO<sub>2</sub>, which was overestimated owing to unadjusted COVID-19-related CO<sub>2</sub> emission reductions. The annual mean CO<sub>2</sub> growth rates from ML XCO<sub>2</sub> (2.065–2.735 ppm/year, 2019–2023) also agree with estimates from OCO-2 and the National Oceanic and Atmospheric Administration surface measurements, indicating the robustness of our approach. Our study demonstrates that the synergy between multiple-satellite measurements enhances the spatial coverage of XCO<sub>2</sub> and improves our understanding of the global carbon cycle.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"130 16\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042809\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JD042809\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JD042809","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准确监测大气中的二氧化碳浓度对于了解全球碳循环至关重要。卫星遥感可以实现全球范围的二氧化碳监测,提供柱平均干空气中二氧化碳的摩尔分数(XCO2)。目前的任务,如轨道碳观测-2 (OCO-2)和温室气体观测卫星(GOSAT)系列提供高质量的XCO2,但由于窄带宽度或云层干扰,存在许多观测空白。为了解决这个问题,我们首先提出了一种机器学习(ML)方法,利用OCO-2、Sentinel-5前驱对流层监测仪器和ERA5再分析数据,在0.25°${}^{\circ}$分辨率下估计每日XCO2 (ML XCO2)。对总碳柱观测网络测量结果的验证显示出高度一致性,R2为0.95,均方根误差为1.05 ppm,平均绝对误差为0.78 ppm。ML XCO2的时空变化与OCO-2、GOSAT和哥白尼大气监测服务(CAMS)的XCO2基本一致。值得注意的是,在2020年2019冠状病毒病(COVID-19)大流行期间,ML XCO2估计与OCO-2和GOSAT XCO2比CAMS XCO2更一致,由于未调整与COVID-19相关的二氧化碳减排,CAMS XCO2估计过高。ML XCO2的年平均CO2增长率(2.065-2.735 ppm/年,2019-2023)也与OCO-2和美国国家海洋和大气管理局地表测量的估计值一致,表明我们的方法具有稳健性。我们的研究表明,多卫星测量之间的协同作用增强了XCO2的空间覆盖,提高了我们对全球碳循环的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergy of Multiple-Satellite Measurements to Fill the Gap of Global XCO2

Synergy of Multiple-Satellite Measurements to Fill the Gap of Global XCO2

Synergy of Multiple-Satellite Measurements to Fill the Gap of Global XCO2

Synergy of Multiple-Satellite Measurements to Fill the Gap of Global XCO2

Synergy of Multiple-Satellite Measurements to Fill the Gap of Global XCO2

Accurate monitoring of atmospheric carbon dioxide (CO2) concentrations is essential for understanding the global carbon cycle. Satellite remote sensing enables global-scale CO2 monitoring, providing column-averaged dry air mole fractions of CO2 (XCO2). Current missions such as the Orbiting Carbon Observatory-2 (OCO-2) and Greenhouse gases Observing SATellite (GOSAT) series provide high-quality XCO2 but have many observation gaps because of narrow swath widths or cloud interference. To address this, we first propose a machine learning (ML) approach to estimate daily XCO2 (ML XCO2) at a 0.25 ° ${}^{\circ}$ resolution using OCO-2, Sentinel-5 Precursor TROPOspheric Monitoring Instrument, and ERA5 reanalysis data from May 2018 to December 2023. Validation against the Total Carbon Column Observing Network measurements shows high agreement, with an R2 of 0.95, a root mean square error of 1.05 ppm, and a mean absolute error of 0.78 ppm. The spatiotemporal variations in ML XCO2 are generally consistent with OCO-2, GOSAT, and the Copernicus Atmospheric Monitoring Service (CAMS) XCO2. Notably, during the Coronavirus disease 2019 (COVID-19) pandemic in 2020, ML XCO2 estimates were more consistent with OCO-2 and GOSAT XCO2 than CAMS XCO2, which was overestimated owing to unadjusted COVID-19-related CO2 emission reductions. The annual mean CO2 growth rates from ML XCO2 (2.065–2.735 ppm/year, 2019–2023) also agree with estimates from OCO-2 and the National Oceanic and Atmospheric Administration surface measurements, indicating the robustness of our approach. Our study demonstrates that the synergy between multiple-satellite measurements enhances the spatial coverage of XCO2 and improves our understanding of the global carbon cycle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信