{"title":"线粒体丙酮酸载体差异性控制人多能干细胞的自我更新和分化","authors":"Dacheng Jiang, Yuchen Wang, Yanhao Chen, Cheng Tian, Xin Li, Shuang Li, Xiaosong Gu, Chunping Jiang, Qiurong Ding","doi":"10.1002/jcp.70083","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Mitochondria are crucial for cell fate determination, yet their roles in human pluripotent stem cell (hPSC) fate changes have remained underexplored. Here, we designed a CRISPR library targeting 661 mitochondrial proteins and identified the MPC (mitochondrial pyruvate carrier) as a critical regulator of hPSC self-renewal and pluripotency. Notably, MPC inhibition reduced hPSC self-renewal and endoderm differentiation while promoting mesoderm differentiation, with no effect on ectoderm differentiation, all mediated by influencing glycolytic acetyl-CoA production. Specifically, the decrease in acetyl-CoA following MPC inhibition affected histone acetylation in hPSCs, compromising self-renewal. In contrast, MPC inhibition did not impact histone acetylation in differentiated cells; instead, it reduced the acetylation of non-histone proteins—EP300 and SMAD2—thereby enhancing mesoderm differentiation and repressing endoderm differentiation, respectively. These findings suggest that distinct effector proteins respond to variations in acetyl-CoA levels at different developmental stages, leading to a context-dependent regulation of cell fate determination by glycolytic acetyl-CoA in hPSCs.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 8","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial Pyruvate Carrier Differentially Controls the Self-Renewal and Differentiation of Human Pluripotent Stem Cells\",\"authors\":\"Dacheng Jiang, Yuchen Wang, Yanhao Chen, Cheng Tian, Xin Li, Shuang Li, Xiaosong Gu, Chunping Jiang, Qiurong Ding\",\"doi\":\"10.1002/jcp.70083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Mitochondria are crucial for cell fate determination, yet their roles in human pluripotent stem cell (hPSC) fate changes have remained underexplored. Here, we designed a CRISPR library targeting 661 mitochondrial proteins and identified the MPC (mitochondrial pyruvate carrier) as a critical regulator of hPSC self-renewal and pluripotency. Notably, MPC inhibition reduced hPSC self-renewal and endoderm differentiation while promoting mesoderm differentiation, with no effect on ectoderm differentiation, all mediated by influencing glycolytic acetyl-CoA production. Specifically, the decrease in acetyl-CoA following MPC inhibition affected histone acetylation in hPSCs, compromising self-renewal. In contrast, MPC inhibition did not impact histone acetylation in differentiated cells; instead, it reduced the acetylation of non-histone proteins—EP300 and SMAD2—thereby enhancing mesoderm differentiation and repressing endoderm differentiation, respectively. These findings suggest that distinct effector proteins respond to variations in acetyl-CoA levels at different developmental stages, leading to a context-dependent regulation of cell fate determination by glycolytic acetyl-CoA in hPSCs.</p></div>\",\"PeriodicalId\":15220,\"journal\":{\"name\":\"Journal of Cellular Physiology\",\"volume\":\"240 8\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cellular Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70083\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70083","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Mitochondrial Pyruvate Carrier Differentially Controls the Self-Renewal and Differentiation of Human Pluripotent Stem Cells
Mitochondria are crucial for cell fate determination, yet their roles in human pluripotent stem cell (hPSC) fate changes have remained underexplored. Here, we designed a CRISPR library targeting 661 mitochondrial proteins and identified the MPC (mitochondrial pyruvate carrier) as a critical regulator of hPSC self-renewal and pluripotency. Notably, MPC inhibition reduced hPSC self-renewal and endoderm differentiation while promoting mesoderm differentiation, with no effect on ectoderm differentiation, all mediated by influencing glycolytic acetyl-CoA production. Specifically, the decrease in acetyl-CoA following MPC inhibition affected histone acetylation in hPSCs, compromising self-renewal. In contrast, MPC inhibition did not impact histone acetylation in differentiated cells; instead, it reduced the acetylation of non-histone proteins—EP300 and SMAD2—thereby enhancing mesoderm differentiation and repressing endoderm differentiation, respectively. These findings suggest that distinct effector proteins respond to variations in acetyl-CoA levels at different developmental stages, leading to a context-dependent regulation of cell fate determination by glycolytic acetyl-CoA in hPSCs.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.