Ghazal Koohkansaadi, Arash Mohagheghi, Ahmad Mobed, Saeid Charsouei
{"title":"中风生物标志物检测的新兴生物传感器技术:全面概述","authors":"Ghazal Koohkansaadi, Arash Mohagheghi, Ahmad Mobed, Saeid Charsouei","doi":"10.1002/ansa.70035","DOIUrl":null,"url":null,"abstract":"<p>Stroke remains a leading cause of morbidity and mortality worldwide, necessitating the development of rapid and reliable diagnostic tools for early detection and management. This manuscript presents an overview of innovative biosensors designed for the detection of key stroke biomarkers, including N-terminal pro B-type natriuretic peptide (NT-proBNP), C-reactive protein (CRP), D-dimer, cardiac troponins, S100B protein, glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), matrix metalloproteinases (MMPs), interleukins and fibrinogen. We discuss the principles of operation, sensitivity, specificity and the technological advancements that have enabled the development of these biosensors, including electrochemical, optical and microfluidic platforms. The integration of nanomaterials and advanced signal amplification techniques has significantly enhanced the performance of these biosensors, allowing for the detection of biomarkers at low concentrations in complex biological samples. Furthermore, we explore the clinical implications of these biosensors in the context of stroke diagnosis, prognosis and monitoring, highlighting their potential to facilitate timely therapeutic interventions. By providing a comprehensive discussion on the current state of biosensor technology for stroke biomarker detection, this manuscript aims to underscore the importance of these tools in improving patient outcomes and advancing stroke research. Future directions for biosensor development and the challenges that remain in translating these technologies into clinical practice are also addressed.</p>","PeriodicalId":93411,"journal":{"name":"Analytical science advances","volume":"6 2","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.70035","citationCount":"0","resultStr":"{\"title\":\"Emerging Biosensor Technologies for Stroke Biomarker Detection: A Comprehensive Overview\",\"authors\":\"Ghazal Koohkansaadi, Arash Mohagheghi, Ahmad Mobed, Saeid Charsouei\",\"doi\":\"10.1002/ansa.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Stroke remains a leading cause of morbidity and mortality worldwide, necessitating the development of rapid and reliable diagnostic tools for early detection and management. This manuscript presents an overview of innovative biosensors designed for the detection of key stroke biomarkers, including N-terminal pro B-type natriuretic peptide (NT-proBNP), C-reactive protein (CRP), D-dimer, cardiac troponins, S100B protein, glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), matrix metalloproteinases (MMPs), interleukins and fibrinogen. We discuss the principles of operation, sensitivity, specificity and the technological advancements that have enabled the development of these biosensors, including electrochemical, optical and microfluidic platforms. The integration of nanomaterials and advanced signal amplification techniques has significantly enhanced the performance of these biosensors, allowing for the detection of biomarkers at low concentrations in complex biological samples. Furthermore, we explore the clinical implications of these biosensors in the context of stroke diagnosis, prognosis and monitoring, highlighting their potential to facilitate timely therapeutic interventions. By providing a comprehensive discussion on the current state of biosensor technology for stroke biomarker detection, this manuscript aims to underscore the importance of these tools in improving patient outcomes and advancing stroke research. Future directions for biosensor development and the challenges that remain in translating these technologies into clinical practice are also addressed.</p>\",\"PeriodicalId\":93411,\"journal\":{\"name\":\"Analytical science advances\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/ansa.70035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical science advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ansa.70035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical science advances","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/ansa.70035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Emerging Biosensor Technologies for Stroke Biomarker Detection: A Comprehensive Overview
Stroke remains a leading cause of morbidity and mortality worldwide, necessitating the development of rapid and reliable diagnostic tools for early detection and management. This manuscript presents an overview of innovative biosensors designed for the detection of key stroke biomarkers, including N-terminal pro B-type natriuretic peptide (NT-proBNP), C-reactive protein (CRP), D-dimer, cardiac troponins, S100B protein, glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), matrix metalloproteinases (MMPs), interleukins and fibrinogen. We discuss the principles of operation, sensitivity, specificity and the technological advancements that have enabled the development of these biosensors, including electrochemical, optical and microfluidic platforms. The integration of nanomaterials and advanced signal amplification techniques has significantly enhanced the performance of these biosensors, allowing for the detection of biomarkers at low concentrations in complex biological samples. Furthermore, we explore the clinical implications of these biosensors in the context of stroke diagnosis, prognosis and monitoring, highlighting their potential to facilitate timely therapeutic interventions. By providing a comprehensive discussion on the current state of biosensor technology for stroke biomarker detection, this manuscript aims to underscore the importance of these tools in improving patient outcomes and advancing stroke research. Future directions for biosensor development and the challenges that remain in translating these technologies into clinical practice are also addressed.