Tamer K. Ibrahim, Ibrahim E. Ragab, Selasi Kwaku Ocloo, Ahmed M. Gemeay
{"title":"寿命和可靠性分析的一种新的逆统计模型","authors":"Tamer K. Ibrahim, Ibrahim E. Ragab, Selasi Kwaku Ocloo, Ahmed M. Gemeay","doi":"10.1002/eng2.70335","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces the Inverse Mustapha Type-II Distribution (<span></span><math>\n <semantics>\n <mrow>\n <mtext>IMU</mtext>\n <msub>\n <mo> </mo>\n <mrow>\n <mi>I</mi>\n <mi>I</mi>\n </mrow>\n </msub>\n <mi>D</mi>\n </mrow>\n <annotation>$$ {\\mathrm{IMU}}_{II}\\mathrm{D} $$</annotation>\n </semantics></math>), a novel lifetime model derived through the inverse transformation of the Mustapha Type-II distribution. Designed for modeling data on the positive real line, the <span></span><math>\n <semantics>\n <mrow>\n <mtext>IMU</mtext>\n <msub>\n <mo> </mo>\n <mrow>\n <mi>I</mi>\n <mi>I</mi>\n </mrow>\n </msub>\n <mi>D</mi>\n </mrow>\n <annotation>$$ {\\mathrm{IMU}}_{II}\\mathrm{D} $$</annotation>\n </semantics></math> offers enhanced flexibility in reliability and survival analysis, particularly where traditional models fall short. We derive key statistical properties of the distribution, including moments, mean residual life, mean inactivity time, and entropy measures. Parameter estimation is explored using multiple methods, with simulation studies demonstrating the robustness of the estimators. The practical applications of the <span></span><math>\n <semantics>\n <mrow>\n <mtext>IMU</mtext>\n <msub>\n <mo> </mo>\n <mrow>\n <mi>I</mi>\n <mi>I</mi>\n </mrow>\n </msub>\n <mi>D</mi>\n </mrow>\n <annotation>$$ {\\mathrm{IMU}}_{II}\\mathrm{D} $$</annotation>\n </semantics></math> are validated through applications to real-world datasets, where it outperforms competing lifetime models in goodness-of-fit tests. Our results highlight the <span></span><math>\n <semantics>\n <mrow>\n <mtext>IMU</mtext>\n <msub>\n <mo> </mo>\n <mrow>\n <mi>I</mi>\n <mi>I</mi>\n </mrow>\n </msub>\n <mi>D</mi>\n </mrow>\n <annotation>$$ {\\mathrm{IMU}}_{II}\\mathrm{D} $$</annotation>\n </semantics></math> as a valuable tool for reliability analysis, survival studies, and related fields, providing a versatile alternative for practitioners.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 8","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70335","citationCount":"0","resultStr":"{\"title\":\"A Novel Inverse Statistical Model for Lifetime and Reliability Analysis\",\"authors\":\"Tamer K. Ibrahim, Ibrahim E. Ragab, Selasi Kwaku Ocloo, Ahmed M. Gemeay\",\"doi\":\"10.1002/eng2.70335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces the Inverse Mustapha Type-II Distribution (<span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>IMU</mtext>\\n <msub>\\n <mo> </mo>\\n <mrow>\\n <mi>I</mi>\\n <mi>I</mi>\\n </mrow>\\n </msub>\\n <mi>D</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{IMU}}_{II}\\\\mathrm{D} $$</annotation>\\n </semantics></math>), a novel lifetime model derived through the inverse transformation of the Mustapha Type-II distribution. Designed for modeling data on the positive real line, the <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>IMU</mtext>\\n <msub>\\n <mo> </mo>\\n <mrow>\\n <mi>I</mi>\\n <mi>I</mi>\\n </mrow>\\n </msub>\\n <mi>D</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{IMU}}_{II}\\\\mathrm{D} $$</annotation>\\n </semantics></math> offers enhanced flexibility in reliability and survival analysis, particularly where traditional models fall short. We derive key statistical properties of the distribution, including moments, mean residual life, mean inactivity time, and entropy measures. Parameter estimation is explored using multiple methods, with simulation studies demonstrating the robustness of the estimators. The practical applications of the <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>IMU</mtext>\\n <msub>\\n <mo> </mo>\\n <mrow>\\n <mi>I</mi>\\n <mi>I</mi>\\n </mrow>\\n </msub>\\n <mi>D</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{IMU}}_{II}\\\\mathrm{D} $$</annotation>\\n </semantics></math> are validated through applications to real-world datasets, where it outperforms competing lifetime models in goodness-of-fit tests. Our results highlight the <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>IMU</mtext>\\n <msub>\\n <mo> </mo>\\n <mrow>\\n <mi>I</mi>\\n <mi>I</mi>\\n </mrow>\\n </msub>\\n <mi>D</mi>\\n </mrow>\\n <annotation>$$ {\\\\mathrm{IMU}}_{II}\\\\mathrm{D} $$</annotation>\\n </semantics></math> as a valuable tool for reliability analysis, survival studies, and related fields, providing a versatile alternative for practitioners.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 8\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70335\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了逆Mustapha ii型分布(IMU II D $$ {\mathrm{IMU}}_{II}\mathrm{D} $$),这是通过对Mustapha ii型分布进行逆变换而得到的一种新的寿命模型。IMU I I D $$ {\mathrm{IMU}}_{II}\mathrm{D} $$专为正实线上的数据建模而设计,在可靠性和生存分析方面提供了更高的灵活性,特别是在传统模型不足的地方。我们推导了分布的关键统计性质,包括矩、平均剩余寿命、平均不活动时间和熵测度。采用多种方法对参数估计进行了探索,仿真研究证明了估计器的鲁棒性。IMU I I D $$ {\mathrm{IMU}}_{II}\mathrm{D} $$的实际应用通过对真实世界数据集的应用进行了验证,在拟合优度测试中,它优于竞争的寿命模型。我们的研究结果突出了IMU I I D $$ {\mathrm{IMU}}_{II}\mathrm{D} $$作为可靠性分析、生存研究和相关领域的有价值的工具,为从业者提供了一个多功能的选择。
A Novel Inverse Statistical Model for Lifetime and Reliability Analysis
This paper introduces the Inverse Mustapha Type-II Distribution (), a novel lifetime model derived through the inverse transformation of the Mustapha Type-II distribution. Designed for modeling data on the positive real line, the offers enhanced flexibility in reliability and survival analysis, particularly where traditional models fall short. We derive key statistical properties of the distribution, including moments, mean residual life, mean inactivity time, and entropy measures. Parameter estimation is explored using multiple methods, with simulation studies demonstrating the robustness of the estimators. The practical applications of the are validated through applications to real-world datasets, where it outperforms competing lifetime models in goodness-of-fit tests. Our results highlight the as a valuable tool for reliability analysis, survival studies, and related fields, providing a versatile alternative for practitioners.