下载PDF
{"title":"空间O C$ \\mathcal {O}_C$的完备性","authors":"Michael Kunzinger, Norbert Ortner","doi":"10.1002/mana.70013","DOIUrl":null,"url":null,"abstract":"<p>We explicitly prove the compact regularity of the <span></span><math>\n <semantics>\n <mi>LF</mi>\n <annotation>$\\mathcal {LF}$</annotation>\n </semantics></math>-space of double sequences <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mi>k</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>≅</mo>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>c</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$ {\\lim _{k\\rightarrow }} (s\\widehat{\\otimes }(\\ell ^p)_{k}) \\cong {\\lim _{k\\rightarrow }}(s\\widehat{\\otimes }(c_0)_{-k})$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\le p\\le \\infty$</annotation>\n </semantics></math>. As a consequence, we obtain that the spaces of slowly and uniformly slowly increasing <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$C^\\infty$</annotation>\n </semantics></math>-functions <span></span><math>\n <semantics>\n <msub>\n <mi>O</mi>\n <mi>M</mi>\n </msub>\n <annotation>$\\mathcal {O}_M$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>O</mi>\n <mi>C</mi>\n </msub>\n <annotation>$\\mathcal {O}_C$</annotation>\n </semantics></math>, respectively, are ultrabornological and complete. Furthermore, we prove that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mi>k</mi>\n </msub>\n <msub>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <mi>ι</mi>\n </msub>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <msub>\n <mi>E</mi>\n <mi>k</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <msub>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <mi>ι</mi>\n </msub>\n <mi>F</mi>\n </mrow>\n <annotation>$ {\\lim _{k\\rightarrow }}(E_k\\widehat{\\otimes }_\\iota F) = ({\\lim _{k\\rightarrow }} E_k) \\widehat{\\otimes }_\\iota F$</annotation>\n </semantics></math> if the inductive limit <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mi>k</mi>\n </msub>\n <msub>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <mi>ι</mi>\n </msub>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$ {\\lim _{k\\rightarrow }}(E_k \\widehat{\\otimes }_\\iota F)$</annotation>\n </semantics></math> is compactly regular.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2740-2748"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70013","citationCount":"0","resultStr":"{\"title\":\"On the completeness of the space \\n \\n \\n O\\n C\\n \\n $\\\\mathcal {O}_C$\",\"authors\":\"Michael Kunzinger, Norbert Ortner\",\"doi\":\"10.1002/mana.70013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We explicitly prove the compact regularity of the <span></span><math>\\n <semantics>\\n <mi>LF</mi>\\n <annotation>$\\\\mathcal {LF}$</annotation>\\n </semantics></math>-space of double sequences <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>lim</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>→</mo>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mover>\\n <mo>⊗</mo>\\n <mo>̂</mo>\\n </mover>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>ℓ</mi>\\n <mi>p</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <mi>k</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mo>≅</mo>\\n <msub>\\n <mi>lim</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>→</mo>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>s</mi>\\n <mover>\\n <mo>⊗</mo>\\n <mo>̂</mo>\\n </mover>\\n <msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>c</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mi>k</mi>\\n </mrow>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$ {\\\\lim _{k\\\\rightarrow }} (s\\\\widehat{\\\\otimes }(\\\\ell ^p)_{k}) \\\\cong {\\\\lim _{k\\\\rightarrow }}(s\\\\widehat{\\\\otimes }(c_0)_{-k})$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mo>≤</mo>\\n <mi>p</mi>\\n <mo>≤</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$1\\\\le p\\\\le \\\\infty$</annotation>\\n </semantics></math>. As a consequence, we obtain that the spaces of slowly and uniformly slowly increasing <span></span><math>\\n <semantics>\\n <msup>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msup>\\n <annotation>$C^\\\\infty$</annotation>\\n </semantics></math>-functions <span></span><math>\\n <semantics>\\n <msub>\\n <mi>O</mi>\\n <mi>M</mi>\\n </msub>\\n <annotation>$\\\\mathcal {O}_M$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>O</mi>\\n <mi>C</mi>\\n </msub>\\n <annotation>$\\\\mathcal {O}_C$</annotation>\\n </semantics></math>, respectively, are ultrabornological and complete. Furthermore, we prove that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>lim</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>→</mo>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mi>k</mi>\\n </msub>\\n <msub>\\n <mover>\\n <mo>⊗</mo>\\n <mo>̂</mo>\\n </mover>\\n <mi>ι</mi>\\n </msub>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>lim</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>→</mo>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>E</mi>\\n <mi>k</mi>\\n </msub>\\n <mo>)</mo>\\n </mrow>\\n <msub>\\n <mover>\\n <mo>⊗</mo>\\n <mo>̂</mo>\\n </mover>\\n <mi>ι</mi>\\n </msub>\\n <mi>F</mi>\\n </mrow>\\n <annotation>$ {\\\\lim _{k\\\\rightarrow }}(E_k\\\\widehat{\\\\otimes }_\\\\iota F) = ({\\\\lim _{k\\\\rightarrow }} E_k) \\\\widehat{\\\\otimes }_\\\\iota F$</annotation>\\n </semantics></math> if the inductive limit <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>lim</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>→</mo>\\n </mrow>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <msub>\\n <mi>E</mi>\\n <mi>k</mi>\\n </msub>\\n <msub>\\n <mover>\\n <mo>⊗</mo>\\n <mo>̂</mo>\\n </mover>\\n <mi>ι</mi>\\n </msub>\\n <mi>F</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$ {\\\\lim _{k\\\\rightarrow }}(E_k \\\\widehat{\\\\otimes }_\\\\iota F)$</annotation>\\n </semantics></math> is compactly regular.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2740-2748\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70013\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70013","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用