{"title":"全空间波动方程的渐近概周期温和解","authors":"Le The Sac, Pham Truong Xuan","doi":"10.1002/mana.70010","DOIUrl":null,"url":null,"abstract":"<p>We study the existence, uniqueness and polynomial stability of forward asymptotically almost periodic (AAP-) mild solutions for the wave equation with a singular potential on the whole space <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> in a framework of weak-<span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math> spaces. First, we use a Yamazaki-type estimate for wave groups on Lorentz spaces to establish the global well-posedness of bounded mild solutions for the corresponding linear wave equations. Then, we provide a Massera-type principle which guarantees the existence of AAP-mild solutions for linear wave equations. Using the results of linear wave equations and fixed point arguments we establish the well-posedness of such solutions for semilinear wave equations. Finally, we obtain a polynomial stability for mild solutions by employing dispersive estimates.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2675-2690"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On asymptotically almost periodic mild solutions for wave equations on the whole space\",\"authors\":\"Le The Sac, Pham Truong Xuan\",\"doi\":\"10.1002/mana.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the existence, uniqueness and polynomial stability of forward asymptotically almost periodic (AAP-) mild solutions for the wave equation with a singular potential on the whole space <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^n$</annotation>\\n </semantics></math> in a framework of weak-<span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mi>p</mi>\\n </msup>\\n <annotation>$L^p$</annotation>\\n </semantics></math> spaces. First, we use a Yamazaki-type estimate for wave groups on Lorentz spaces to establish the global well-posedness of bounded mild solutions for the corresponding linear wave equations. Then, we provide a Massera-type principle which guarantees the existence of AAP-mild solutions for linear wave equations. Using the results of linear wave equations and fixed point arguments we establish the well-posedness of such solutions for semilinear wave equations. Finally, we obtain a polynomial stability for mild solutions by employing dispersive estimates.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2675-2690\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70010\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在弱- L p$ L^p$空间框架下,研究了具有奇异势的波动方程在整个空间R n$ \mathbb {R}^n$上的正渐近概周期(AAP-)温和解的存在性、唯一性和多项式稳定性。首先,我们利用Lorentz空间上波群的yamazaki型估计,建立了相应线性波动方程有界温和解的全局适定性。然后,我们给出了保证线性波动方程aap -温和解存在的massera型原理。利用线性波动方程的结果和不动点参数,我们建立了这种半线性波动方程解的适定性。最后,我们利用色散估计得到了温和解的多项式稳定性。
On asymptotically almost periodic mild solutions for wave equations on the whole space
We study the existence, uniqueness and polynomial stability of forward asymptotically almost periodic (AAP-) mild solutions for the wave equation with a singular potential on the whole space in a framework of weak- spaces. First, we use a Yamazaki-type estimate for wave groups on Lorentz spaces to establish the global well-posedness of bounded mild solutions for the corresponding linear wave equations. Then, we provide a Massera-type principle which guarantees the existence of AAP-mild solutions for linear wave equations. Using the results of linear wave equations and fixed point arguments we establish the well-posedness of such solutions for semilinear wave equations. Finally, we obtain a polynomial stability for mild solutions by employing dispersive estimates.
期刊介绍:
Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index