Irbaz Bin Riaz MD, PhD, Muhammad Ali Khan MD, Travis J. Osterman DO, MS
{"title":"人工智能在癌症治疗中的应用","authors":"Irbaz Bin Riaz MD, PhD, Muhammad Ali Khan MD, Travis J. Osterman DO, MS","doi":"10.1002/cncr.70050","DOIUrl":null,"url":null,"abstract":"<p>Artificial intelligence (AI) holds significant potential to enhance various aspects of oncology, spanning the cancer care continuum. This review provides an overview of current and emerging AI applications, from risk assessment and early detection to treatment and supportive care. AI-driven tools are being developed to integrate diverse data sources, including multi-omics and electronic health records, to improve cancer risk stratification and personalize prevention strategies. In screening and diagnosis, AI algorithms show promise in augmenting the accuracy and efficiency of medical image analysis and histopathology interpretation. AI also offers opportunities to refine treatment planning, optimize radiation therapy, and personalize systemic therapy selection. Furthermore, AI is explored for its potential to improve survivorship care by tailoring interventions and to enhance end-of-life care through improved symptom management and prognostic modeling. Beyond care delivery, AI augments clinical workflows, streamlines the dissemination of up-to-date evidence, and captures critical patient-reported outcomes for clinical decision support and outcomes assessment. However, the successful integration of AI into clinical practice requires addressing key challenges, including rigorous validation of algorithms, ensuring data privacy and security, and mitigating potential biases. Effective implementation necessitates interdisciplinary collaboration and comprehensive education for health care professionals. The synergistic interaction between AI and clinical expertise is crucial for realizing the potential of AI to contribute to personalized and effective cancer care. This review highlights the current state of AI in oncology and underscores the importance of responsible development and implementation.</p>","PeriodicalId":138,"journal":{"name":"Cancer","volume":"131 16","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://acsjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/cncr.70050","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence across the cancer care continuum\",\"authors\":\"Irbaz Bin Riaz MD, PhD, Muhammad Ali Khan MD, Travis J. Osterman DO, MS\",\"doi\":\"10.1002/cncr.70050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Artificial intelligence (AI) holds significant potential to enhance various aspects of oncology, spanning the cancer care continuum. This review provides an overview of current and emerging AI applications, from risk assessment and early detection to treatment and supportive care. AI-driven tools are being developed to integrate diverse data sources, including multi-omics and electronic health records, to improve cancer risk stratification and personalize prevention strategies. In screening and diagnosis, AI algorithms show promise in augmenting the accuracy and efficiency of medical image analysis and histopathology interpretation. AI also offers opportunities to refine treatment planning, optimize radiation therapy, and personalize systemic therapy selection. Furthermore, AI is explored for its potential to improve survivorship care by tailoring interventions and to enhance end-of-life care through improved symptom management and prognostic modeling. Beyond care delivery, AI augments clinical workflows, streamlines the dissemination of up-to-date evidence, and captures critical patient-reported outcomes for clinical decision support and outcomes assessment. However, the successful integration of AI into clinical practice requires addressing key challenges, including rigorous validation of algorithms, ensuring data privacy and security, and mitigating potential biases. Effective implementation necessitates interdisciplinary collaboration and comprehensive education for health care professionals. The synergistic interaction between AI and clinical expertise is crucial for realizing the potential of AI to contribute to personalized and effective cancer care. This review highlights the current state of AI in oncology and underscores the importance of responsible development and implementation.</p>\",\"PeriodicalId\":138,\"journal\":{\"name\":\"Cancer\",\"volume\":\"131 16\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://acsjournals.onlinelibrary.wiley.com/doi/epdf/10.1002/cncr.70050\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://acsjournals.onlinelibrary.wiley.com/doi/10.1002/cncr.70050\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer","FirstCategoryId":"3","ListUrlMain":"https://acsjournals.onlinelibrary.wiley.com/doi/10.1002/cncr.70050","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Artificial intelligence across the cancer care continuum
Artificial intelligence (AI) holds significant potential to enhance various aspects of oncology, spanning the cancer care continuum. This review provides an overview of current and emerging AI applications, from risk assessment and early detection to treatment and supportive care. AI-driven tools are being developed to integrate diverse data sources, including multi-omics and electronic health records, to improve cancer risk stratification and personalize prevention strategies. In screening and diagnosis, AI algorithms show promise in augmenting the accuracy and efficiency of medical image analysis and histopathology interpretation. AI also offers opportunities to refine treatment planning, optimize radiation therapy, and personalize systemic therapy selection. Furthermore, AI is explored for its potential to improve survivorship care by tailoring interventions and to enhance end-of-life care through improved symptom management and prognostic modeling. Beyond care delivery, AI augments clinical workflows, streamlines the dissemination of up-to-date evidence, and captures critical patient-reported outcomes for clinical decision support and outcomes assessment. However, the successful integration of AI into clinical practice requires addressing key challenges, including rigorous validation of algorithms, ensuring data privacy and security, and mitigating potential biases. Effective implementation necessitates interdisciplinary collaboration and comprehensive education for health care professionals. The synergistic interaction between AI and clinical expertise is crucial for realizing the potential of AI to contribute to personalized and effective cancer care. This review highlights the current state of AI in oncology and underscores the importance of responsible development and implementation.
期刊介绍:
The CANCER site is a full-text, electronic implementation of CANCER, an Interdisciplinary International Journal of the American Cancer Society, and CANCER CYTOPATHOLOGY, a Journal of the American Cancer Society.
CANCER publishes interdisciplinary oncologic information according to, but not limited to, the following disease sites and disciplines: blood/bone marrow; breast disease; endocrine disorders; epidemiology; gastrointestinal tract; genitourinary disease; gynecologic oncology; head and neck disease; hepatobiliary tract; integrated medicine; lung disease; medical oncology; neuro-oncology; pathology radiation oncology; translational research