{"title":"Reelin/Disabled-1信号对斑马鱼脊髓损伤后功能恢复的影响","authors":"Rong Li, Sudhanshu Sahu","doi":"10.1002/jdn.70045","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Reelin, an extracellular matrix glycoprotein, plays important roles in neural development. Mutation-induced loss of its functions in mammals leads to severe disorders associated with impaired motor coordination, tremors and ataxia. Little is known about Reelin's role in functional recovery after central nervous system injury. We determined the effect of knock-down of Reelin and its downstream signal-transducing molecule Disabled-1 (Dab-1) on functional recovery after spinal cord injury in larval zebrafish. Larvae deficient in Reelin and Dab-1 were generated by application of two non-overlapping antisense morpholinos for each molecule. Individual knock-down of Reelin and Dab-1 expression impaired locomotor recovery after injury, inhibited remyelination of regrown axons and reduced numbers of motor neurons caudal to the lesion site. These results indicate that the Reelin/Dab-1 signalling pathway is involved in axon regeneration after injury of a paradigmatic vertebrate in the central nervous system.</p>\n </div>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"85 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reelin/Disabled-1 Signalling Contributes to Functional Recovery on Zebrafish After Spinal Cord Injury\",\"authors\":\"Rong Li, Sudhanshu Sahu\",\"doi\":\"10.1002/jdn.70045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Reelin, an extracellular matrix glycoprotein, plays important roles in neural development. Mutation-induced loss of its functions in mammals leads to severe disorders associated with impaired motor coordination, tremors and ataxia. Little is known about Reelin's role in functional recovery after central nervous system injury. We determined the effect of knock-down of Reelin and its downstream signal-transducing molecule Disabled-1 (Dab-1) on functional recovery after spinal cord injury in larval zebrafish. Larvae deficient in Reelin and Dab-1 were generated by application of two non-overlapping antisense morpholinos for each molecule. Individual knock-down of Reelin and Dab-1 expression impaired locomotor recovery after injury, inhibited remyelination of regrown axons and reduced numbers of motor neurons caudal to the lesion site. These results indicate that the Reelin/Dab-1 signalling pathway is involved in axon regeneration after injury of a paradigmatic vertebrate in the central nervous system.</p>\\n </div>\",\"PeriodicalId\":13914,\"journal\":{\"name\":\"International Journal of Developmental Neuroscience\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Developmental Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jdn.70045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.70045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Reelin/Disabled-1 Signalling Contributes to Functional Recovery on Zebrafish After Spinal Cord Injury
Reelin, an extracellular matrix glycoprotein, plays important roles in neural development. Mutation-induced loss of its functions in mammals leads to severe disorders associated with impaired motor coordination, tremors and ataxia. Little is known about Reelin's role in functional recovery after central nervous system injury. We determined the effect of knock-down of Reelin and its downstream signal-transducing molecule Disabled-1 (Dab-1) on functional recovery after spinal cord injury in larval zebrafish. Larvae deficient in Reelin and Dab-1 were generated by application of two non-overlapping antisense morpholinos for each molecule. Individual knock-down of Reelin and Dab-1 expression impaired locomotor recovery after injury, inhibited remyelination of regrown axons and reduced numbers of motor neurons caudal to the lesion site. These results indicate that the Reelin/Dab-1 signalling pathway is involved in axon regeneration after injury of a paradigmatic vertebrate in the central nervous system.
期刊介绍:
International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.