具有正则束非不变平凡化部分的六维复解流形

IF 0.8 3区 数学 Q2 MATHEMATICS
Alejandro Tolcachier
{"title":"具有正则束非不变平凡化部分的六维复解流形","authors":"Alejandro Tolcachier","doi":"10.1002/mana.70008","DOIUrl":null,"url":null,"abstract":"<p>It is known that there exist complex solvmanifolds <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>Γ</mi>\n <mo>∖</mo>\n <mi>G</mi>\n <mo>,</mo>\n <mi>J</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$(\\Gamma \\backslash G,J)$</annotation>\n </semantics></math> whose canonical bundle is trivialized by a holomorphic section that is not invariant under the action of <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>. The main goal of this paper is to classify the six-dimensional Lie algebras corresponding to such complex solvmanifolds, thus extending the previous work of Fino, Otal, and Ugarte for the invariant case. To achieve this, we complete the classification of six-dimensional solvable strongly unimodular Lie algebras admitting complex structures and identify among them, the ones admitting complex structures with Chern–Ricci flat metrics. Finally, we construct complex solvmanifolds with non-invariant holomorphic sections of their canonical bundle. In particular, we present an example of one such solvmanifold that is not biholomorphic to a complex solvmanifold with an invariant holomorphic section of its canonical bundle. Additionally, we discover a new six-dimensional solvable strongly unimodular Lie algebra equipped with a complex structure that has a nonzero holomorphic (3,0)-form.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2626-2651"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Six-dimensional complex solvmanifolds with non-invariant trivializing sections of their canonical bundle\",\"authors\":\"Alejandro Tolcachier\",\"doi\":\"10.1002/mana.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is known that there exist complex solvmanifolds <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>Γ</mi>\\n <mo>∖</mo>\\n <mi>G</mi>\\n <mo>,</mo>\\n <mi>J</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(\\\\Gamma \\\\backslash G,J)$</annotation>\\n </semantics></math> whose canonical bundle is trivialized by a holomorphic section that is not invariant under the action of <span></span><math>\\n <semantics>\\n <mi>G</mi>\\n <annotation>$G$</annotation>\\n </semantics></math>. The main goal of this paper is to classify the six-dimensional Lie algebras corresponding to such complex solvmanifolds, thus extending the previous work of Fino, Otal, and Ugarte for the invariant case. To achieve this, we complete the classification of six-dimensional solvable strongly unimodular Lie algebras admitting complex structures and identify among them, the ones admitting complex structures with Chern–Ricci flat metrics. Finally, we construct complex solvmanifolds with non-invariant holomorphic sections of their canonical bundle. In particular, we present an example of one such solvmanifold that is not biholomorphic to a complex solvmanifold with an invariant holomorphic section of its canonical bundle. Additionally, we discover a new six-dimensional solvable strongly unimodular Lie algebra equipped with a complex structure that has a nonzero holomorphic (3,0)-form.</p>\",\"PeriodicalId\":49853,\"journal\":{\"name\":\"Mathematische Nachrichten\",\"volume\":\"298 8\",\"pages\":\"2626-2651\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Nachrichten\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.70008\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70008","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

已知存在复解流形(Γ∈G,J)$ (\Gamma \反斜线G,J)$,其正则束在G$ G$作用下被非不变全纯截面化。本文的主要目的是对这类复解流形对应的六维李代数进行分类,从而推广了Fino、Otal和Ugarte在不变情况下的工作。为此,我们完成了承认复杂结构的六维可解强单模李代数的分类,并对其中承认复杂结构的具有chen - ricci平面度量的李代数进行了识别。最后,构造了具有正则束非不变全纯截面的复解流形。特别地,我们给出了一个这样的解流形的例子,它对于具有正则束的不变全纯截面的复解流形不是生物全纯的。此外,我们还发现了一个具有非零全纯(3,0)形式的复结构的六维可解强单模李代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Six-dimensional complex solvmanifolds with non-invariant trivializing sections of their canonical bundle

It is known that there exist complex solvmanifolds ( Γ G , J ) $(\Gamma \backslash G,J)$ whose canonical bundle is trivialized by a holomorphic section that is not invariant under the action of G $G$ . The main goal of this paper is to classify the six-dimensional Lie algebras corresponding to such complex solvmanifolds, thus extending the previous work of Fino, Otal, and Ugarte for the invariant case. To achieve this, we complete the classification of six-dimensional solvable strongly unimodular Lie algebras admitting complex structures and identify among them, the ones admitting complex structures with Chern–Ricci flat metrics. Finally, we construct complex solvmanifolds with non-invariant holomorphic sections of their canonical bundle. In particular, we present an example of one such solvmanifold that is not biholomorphic to a complex solvmanifold with an invariant holomorphic section of its canonical bundle. Additionally, we discover a new six-dimensional solvable strongly unimodular Lie algebra equipped with a complex structure that has a nonzero holomorphic (3,0)-form.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信