远距离表面等离子体共振传感器的优化介电-等离子体界面

IF 2.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Rajeev Kumar, Shivam Singh, Rachana Arya,  Mayank, Abdullah Saad Alsubaie, Amrindra Pal, Arshdeep Singh, Lalit Garia
{"title":"远距离表面等离子体共振传感器的优化介电-等离子体界面","authors":"Rajeev Kumar,&nbsp;Shivam Singh,&nbsp;Rachana Arya,&nbsp; Mayank,&nbsp;Abdullah Saad Alsubaie,&nbsp;Amrindra Pal,&nbsp;Arshdeep Singh,&nbsp;Lalit Garia","doi":"10.1007/s10825-025-02403-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this seminal work, we propose a novel-guided wave long-range surface plasmon resonance (GW-LRSPR) sensor. The multilayer sensor structure combines 2S2G prism, cytop, BaTiO<sub>3</sub>, and silver (Ag). The inclusion of barium titanate (BaTiO<sub>3</sub>: perovskite material), a material with high permittivity and piezoelectric properties, significantly enhances the imaging sensitivity (<i>S</i><sub>imag</sub>) of the proposed GW-LRSPR sensor as it allows for the tuning of the plasmonic response through electrical or mechanical stimuli. Additionally, the use of a Cytop layer as an insulating and protective dielectric layer further enhances the sensor’s durability and optical performance. By incorporating the BaTiO<sub>3</sub> layer, the sensor achieves a maximum <i>S</i><sub>imag</sub> of 73,031 RIU<sup>−1</sup>, significantly higher than the 44,542 RIU<sup>−1</sup> obtained without the layer. Hence, the GW-LRSPR sensor demonstrated strong capability in analyte detection. The sensor also exhibits a figure of merit (FoM) of 7.3 × 10<sup>6</sup> RIU<sup>−1</sup>, with detection accuracies (DA) of 169.49/° and 185.18/° for the LRSPR and GW-LRSPR sensors, respectively. Overall, the proposed GW-LRSPR sensor improves imaging sensitivity by nearly 64% compared to the LRSPR sensor.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimized dielectric-plasmonic interfaces for long-range surface plasmon resonance sensors\",\"authors\":\"Rajeev Kumar,&nbsp;Shivam Singh,&nbsp;Rachana Arya,&nbsp; Mayank,&nbsp;Abdullah Saad Alsubaie,&nbsp;Amrindra Pal,&nbsp;Arshdeep Singh,&nbsp;Lalit Garia\",\"doi\":\"10.1007/s10825-025-02403-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this seminal work, we propose a novel-guided wave long-range surface plasmon resonance (GW-LRSPR) sensor. The multilayer sensor structure combines 2S2G prism, cytop, BaTiO<sub>3</sub>, and silver (Ag). The inclusion of barium titanate (BaTiO<sub>3</sub>: perovskite material), a material with high permittivity and piezoelectric properties, significantly enhances the imaging sensitivity (<i>S</i><sub>imag</sub>) of the proposed GW-LRSPR sensor as it allows for the tuning of the plasmonic response through electrical or mechanical stimuli. Additionally, the use of a Cytop layer as an insulating and protective dielectric layer further enhances the sensor’s durability and optical performance. By incorporating the BaTiO<sub>3</sub> layer, the sensor achieves a maximum <i>S</i><sub>imag</sub> of 73,031 RIU<sup>−1</sup>, significantly higher than the 44,542 RIU<sup>−1</sup> obtained without the layer. Hence, the GW-LRSPR sensor demonstrated strong capability in analyte detection. The sensor also exhibits a figure of merit (FoM) of 7.3 × 10<sup>6</sup> RIU<sup>−1</sup>, with detection accuracies (DA) of 169.49/° and 185.18/° for the LRSPR and GW-LRSPR sensors, respectively. Overall, the proposed GW-LRSPR sensor improves imaging sensitivity by nearly 64% compared to the LRSPR sensor.</p></div>\",\"PeriodicalId\":620,\"journal\":{\"name\":\"Journal of Computational Electronics\",\"volume\":\"24 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10825-025-02403-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02403-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项开创性的工作中,我们提出了一种新型的导波远程表面等离子体共振(GW-LRSPR)传感器。多层传感器结构由2S2G棱镜、cytop、BaTiO3和银(Ag)组成。钛酸钡(BaTiO3:钙钛矿材料)是一种具有高介电常数和压电特性的材料,它可以通过电或机械刺激调节等离子体响应,从而显着提高了所提出的GW-LRSPR传感器的成像灵敏度(Simag)。此外,使用Cytop层作为绝缘和保护介电层进一步提高了传感器的耐用性和光学性能。通过加入BaTiO3层,传感器的最大Simag达到73,031 RIU−1,显著高于未加入BaTiO3层时的44,542 RIU−1。因此,GW-LRSPR传感器具有很强的分析物检测能力。LRSPR和GW-LRSPR传感器的优值(FoM)为7.3 × 106 RIU−1,检测精度(DA)分别为169.49/°和185.18/°。总体而言,与LRSPR传感器相比,所提出的GW-LRSPR传感器的成像灵敏度提高了近64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized dielectric-plasmonic interfaces for long-range surface plasmon resonance sensors

In this seminal work, we propose a novel-guided wave long-range surface plasmon resonance (GW-LRSPR) sensor. The multilayer sensor structure combines 2S2G prism, cytop, BaTiO3, and silver (Ag). The inclusion of barium titanate (BaTiO3: perovskite material), a material with high permittivity and piezoelectric properties, significantly enhances the imaging sensitivity (Simag) of the proposed GW-LRSPR sensor as it allows for the tuning of the plasmonic response through electrical or mechanical stimuli. Additionally, the use of a Cytop layer as an insulating and protective dielectric layer further enhances the sensor’s durability and optical performance. By incorporating the BaTiO3 layer, the sensor achieves a maximum Simag of 73,031 RIU−1, significantly higher than the 44,542 RIU−1 obtained without the layer. Hence, the GW-LRSPR sensor demonstrated strong capability in analyte detection. The sensor also exhibits a figure of merit (FoM) of 7.3 × 106 RIU−1, with detection accuracies (DA) of 169.49/° and 185.18/° for the LRSPR and GW-LRSPR sensors, respectively. Overall, the proposed GW-LRSPR sensor improves imaging sensitivity by nearly 64% compared to the LRSPR sensor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信