考虑近场和远场地震动的三层交叉层合木结构抗震易损性分析

IF 4.1 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Saeid Javidi, Igor Gavric’, Georgios Fourlaris, Mohammad Reza Salami
{"title":"考虑近场和远场地震动的三层交叉层合木结构抗震易损性分析","authors":"Saeid Javidi,&nbsp;Igor Gavric’,&nbsp;Georgios Fourlaris,&nbsp;Mohammad Reza Salami","doi":"10.1007/s10518-025-02206-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the seismic response of the three-story Cross-Laminated Timber (CLT) building of the SOFIE project subjected to the Near-Field (NF) Far-Field (FF) ground motions according to FEMA P-695. The numerical models have been developed in connector, wall and full-scale building levels in OpenSees. Nonlinear nonlinear springs have been utilised to model the behaviour of CLT connectors while considering Gap joints only to transfer compression forces between panels and the rigid foundation without the ability to carry tensile forces. The CLT panels have been modelled as moment-resisting frames by applying elastic beam elements with high stiffness. The panel-to-panel and panel-to-foundation friction has also been considered by modifying the initial stiffness of the CLT connector springs. The building was analysed using Incremental Dynamic Analysis (IDA), including 2450 time-history simulations, to assess its behaviour during ground motions. Significant Damage (SD) and Near-Collapse (NC) damage stated have been identified for the building based on EN12512 standard through Modal Push-over Analysis (MPA). Subsequently, the fragility curves have been developed for the CLT building under NF and FF ground motions. The IDA curves prove that the CLT building considered in this paper is more affected by Near-Field Pulse-like (NF-P) than by Near-Field No-Pulse (NF-NP) and FF ground motions. Moreover, the modelled building is significantly more affected by NF-P ground motions than by NF-NP and FF motions, with a higher probability of collapse under NF-P conditions.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 10","pages":"4047 - 4068"},"PeriodicalIF":4.1000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-025-02206-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Seismic fragility analysis of a three-story cross-laminated timber building considering near and far field ground motions\",\"authors\":\"Saeid Javidi,&nbsp;Igor Gavric’,&nbsp;Georgios Fourlaris,&nbsp;Mohammad Reza Salami\",\"doi\":\"10.1007/s10518-025-02206-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper investigates the seismic response of the three-story Cross-Laminated Timber (CLT) building of the SOFIE project subjected to the Near-Field (NF) Far-Field (FF) ground motions according to FEMA P-695. The numerical models have been developed in connector, wall and full-scale building levels in OpenSees. Nonlinear nonlinear springs have been utilised to model the behaviour of CLT connectors while considering Gap joints only to transfer compression forces between panels and the rigid foundation without the ability to carry tensile forces. The CLT panels have been modelled as moment-resisting frames by applying elastic beam elements with high stiffness. The panel-to-panel and panel-to-foundation friction has also been considered by modifying the initial stiffness of the CLT connector springs. The building was analysed using Incremental Dynamic Analysis (IDA), including 2450 time-history simulations, to assess its behaviour during ground motions. Significant Damage (SD) and Near-Collapse (NC) damage stated have been identified for the building based on EN12512 standard through Modal Push-over Analysis (MPA). Subsequently, the fragility curves have been developed for the CLT building under NF and FF ground motions. The IDA curves prove that the CLT building considered in this paper is more affected by Near-Field Pulse-like (NF-P) than by Near-Field No-Pulse (NF-NP) and FF ground motions. Moreover, the modelled building is significantly more affected by NF-P ground motions than by NF-NP and FF motions, with a higher probability of collapse under NF-P conditions.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"23 10\",\"pages\":\"4047 - 4068\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-025-02206-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-025-02206-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-025-02206-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文根据FEMA P-695的要求,研究了SOFIE项目三层交叉层合木(CLT)建筑在近场(NF)和远场(FF)地面运动下的地震反应。在OpenSees中,已经开发了连接器、墙壁和全尺寸建筑级别的数值模型。非线性非线性弹簧已被用于模拟CLT连接件的行为,同时考虑间隙连接仅在面板和刚性基础之间传递压缩力,而不具有承载拉力的能力。通过应用高刚度的弹性梁单元,CLT面板被建模为抗弯矩框架。通过修改CLT接头弹簧的初始刚度,还考虑了面板与面板之间以及面板与基础之间的摩擦。该建筑使用增量动力分析(IDA)进行分析,包括2450次时程模拟,以评估其在地面运动中的行为。根据EN12512标准,通过模态推覆分析(MPA),确定了该建筑的重大损伤(SD)和近倒塌(NC)损伤。在此基础上,建立了NF和FF地震动作用下CLT建筑的易损性曲线。IDA曲线证明本文所考虑的CLT建筑受近场类脉冲(NF-P)地震动的影响大于近场无脉冲(NF-NP)和FF地震动的影响。此外,与NF-NP和FF运动相比,模拟建筑受NF-P地面运动的影响更大,在NF-P条件下倒塌的概率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seismic fragility analysis of a three-story cross-laminated timber building considering near and far field ground motions

This paper investigates the seismic response of the three-story Cross-Laminated Timber (CLT) building of the SOFIE project subjected to the Near-Field (NF) Far-Field (FF) ground motions according to FEMA P-695. The numerical models have been developed in connector, wall and full-scale building levels in OpenSees. Nonlinear nonlinear springs have been utilised to model the behaviour of CLT connectors while considering Gap joints only to transfer compression forces between panels and the rigid foundation without the ability to carry tensile forces. The CLT panels have been modelled as moment-resisting frames by applying elastic beam elements with high stiffness. The panel-to-panel and panel-to-foundation friction has also been considered by modifying the initial stiffness of the CLT connector springs. The building was analysed using Incremental Dynamic Analysis (IDA), including 2450 time-history simulations, to assess its behaviour during ground motions. Significant Damage (SD) and Near-Collapse (NC) damage stated have been identified for the building based on EN12512 standard through Modal Push-over Analysis (MPA). Subsequently, the fragility curves have been developed for the CLT building under NF and FF ground motions. The IDA curves prove that the CLT building considered in this paper is more affected by Near-Field Pulse-like (NF-P) than by Near-Field No-Pulse (NF-NP) and FF ground motions. Moreover, the modelled building is significantly more affected by NF-P ground motions than by NF-NP and FF motions, with a higher probability of collapse under NF-P conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信