二维TMDC半导体中的量子电容:温度、电场和自旋谷塞曼场的影响

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Do Muoi, Le Van Tan
{"title":"二维TMDC半导体中的量子电容:温度、电场和自旋谷塞曼场的影响","authors":"Do Muoi,&nbsp;Le Van Tan","doi":"10.1140/epjb/s10051-025-01023-z","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the dependence of quantum capacitance <span>\\(\\left({C}_{\\text{Q}}\\right)\\)</span> on the Fermi energy <span>\\(\\left({E}_{\\text{F}}\\right)\\)</span> in two-dimensional semiconductor materials belonging to the transition metal dichalcogenide (TMDC) family, taking into account the influences of external electric fields, Zeeman fields, and temperature. At low temperatures, distinct peaks and abrupt steps are clearly observed; whereas, at room temperature, these features are suppressed owing to thermal broadening from the Fermi–Dirac distribution. When external electric fields and Zeeman field components are introduced, the structure of <span>\\({C}_{\\text{Q}}\\)</span> becomes more complex, exhibiting step-like features and deep valleys around the Fermi level. These reflect energy level splitting induced by spin–orbit coupling and valley polarization. A comparison among MoS<sub>2</sub>, MoSe<sub>2</sub>, WS<sub>2</sub>, and WSe<sub>2</sub> reveals significant differences in the band gap width and density of states. These results demonstrate that the quantum capacitance in TMDCs is sensitive to external parameters, highlighting its potential for applications in quantum electronic devices, high-sensitivity sensors, and spintronic technologies based on two-dimensional materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"98 8","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum capacitance in two-dimensional TMDC semiconductors: effects of temperature, electric field, and spin–valley Zeeman field\",\"authors\":\"Do Muoi,&nbsp;Le Van Tan\",\"doi\":\"10.1140/epjb/s10051-025-01023-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the dependence of quantum capacitance <span>\\\\(\\\\left({C}_{\\\\text{Q}}\\\\right)\\\\)</span> on the Fermi energy <span>\\\\(\\\\left({E}_{\\\\text{F}}\\\\right)\\\\)</span> in two-dimensional semiconductor materials belonging to the transition metal dichalcogenide (TMDC) family, taking into account the influences of external electric fields, Zeeman fields, and temperature. At low temperatures, distinct peaks and abrupt steps are clearly observed; whereas, at room temperature, these features are suppressed owing to thermal broadening from the Fermi–Dirac distribution. When external electric fields and Zeeman field components are introduced, the structure of <span>\\\\({C}_{\\\\text{Q}}\\\\)</span> becomes more complex, exhibiting step-like features and deep valleys around the Fermi level. These reflect energy level splitting induced by spin–orbit coupling and valley polarization. A comparison among MoS<sub>2</sub>, MoSe<sub>2</sub>, WS<sub>2</sub>, and WSe<sub>2</sub> reveals significant differences in the band gap width and density of states. These results demonstrate that the quantum capacitance in TMDCs is sensitive to external parameters, highlighting its potential for applications in quantum electronic devices, high-sensitivity sensors, and spintronic technologies based on two-dimensional materials.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":787,\"journal\":{\"name\":\"The European Physical Journal B\",\"volume\":\"98 8\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjb/s10051-025-01023-z\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-025-01023-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

考虑外电场、塞曼场和温度的影响,研究了过渡金属二硫化物(TMDC)族二维半导体材料中量子电容\(\left({C}_{\text{Q}}\right)\)对费米能量\(\left({E}_{\text{F}}\right)\)的依赖关系。在低温下,可以清晰地观察到明显的峰和陡坡;然而,在室温下,由于费米-狄拉克分布的热展宽,这些特征被抑制。当引入外电场和塞曼场分量时,\({C}_{\text{Q}}\)的结构变得更加复杂,在费米能级周围呈现阶梯状特征和深谷。这反映了自旋轨道耦合和谷极化引起的能级分裂。MoS2、MoSe2、WS2和WSe2的带隙宽度和态密度存在显著差异。这些结果表明,TMDCs中的量子电容对外部参数敏感,突出了其在量子电子器件、高灵敏度传感器和基于二维材料的自旋电子技术中的应用潜力。图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum capacitance in two-dimensional TMDC semiconductors: effects of temperature, electric field, and spin–valley Zeeman field

We investigate the dependence of quantum capacitance \(\left({C}_{\text{Q}}\right)\) on the Fermi energy \(\left({E}_{\text{F}}\right)\) in two-dimensional semiconductor materials belonging to the transition metal dichalcogenide (TMDC) family, taking into account the influences of external electric fields, Zeeman fields, and temperature. At low temperatures, distinct peaks and abrupt steps are clearly observed; whereas, at room temperature, these features are suppressed owing to thermal broadening from the Fermi–Dirac distribution. When external electric fields and Zeeman field components are introduced, the structure of \({C}_{\text{Q}}\) becomes more complex, exhibiting step-like features and deep valleys around the Fermi level. These reflect energy level splitting induced by spin–orbit coupling and valley polarization. A comparison among MoS2, MoSe2, WS2, and WSe2 reveals significant differences in the band gap width and density of states. These results demonstrate that the quantum capacitance in TMDCs is sensitive to external parameters, highlighting its potential for applications in quantum electronic devices, high-sensitivity sensors, and spintronic technologies based on two-dimensional materials.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信