深紫外等离子体共振在杂化硅纳米结构上的光致发光增强

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tao Liu, Haowen Chen, Wenxuan Liu, Huazhen Wu, Xing Zhen, Shasha Li, Lei Shao, Shao-Zhi Deng
{"title":"深紫外等离子体共振在杂化硅纳米结构上的光致发光增强","authors":"Tao Liu,&nbsp;Haowen Chen,&nbsp;Wenxuan Liu,&nbsp;Huazhen Wu,&nbsp;Xing Zhen,&nbsp;Shasha Li,&nbsp;Lei Shao,&nbsp;Shao-Zhi Deng","doi":"10.1186/s11671-025-04324-5","DOIUrl":null,"url":null,"abstract":"<div><p>Deep ultraviolet (DUV) nanophotonic technologies are of vital importance for applications in biomedical sensing, advanced lithography, light sources, and optoelectronic devices. Plasmonic nanostructures with DUV resonance properties can generate highly confined optical fields. They therefore have great potential in amplifying spectral signals from molecules with intense vibronic transitions in the DUV region and improving the sensitivity of solar-blind detection. However, practical applications of DUV plasmonic structures are hindered by challenges such as oxidation, photo-induced damage, high material loss, and costly fabrication. Herein, we employ hybrid Si Fabry-Pérot nanoresonators constructed from random Si nanodisk arrays and a Si mirror to improve the DUV plasmonic properties of individual Si nanostructures. The hybrid nanoresonators exhibit strong resonance modes that are tunable in the DUV regime, resulting from the coupling between nanodisk plasmon resonances and Fabry-Pérot cavity modes. In addition, we fabricate centimeter-scale nanoresonator arrays that support distinct DUV plasmon resonances using a low-cost hole-mask colloidal lithography method. We further demonstrate that the hybrid Si nanoresonator substrate can enhance the molecular ultraviolet photoluminescence by a factor of up to 2.7. By combining the advantages of Si nanodisks’ DUV localized surface plasmon and Fabry-Pérot cavity resonances, our design offers a promising platform for molecular detection, solar-blind photodetection, and biosensing.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04324-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep-ultraviolet plasmon resonances on hybrid Si nanostructures for photoluminescence enhancement\",\"authors\":\"Tao Liu,&nbsp;Haowen Chen,&nbsp;Wenxuan Liu,&nbsp;Huazhen Wu,&nbsp;Xing Zhen,&nbsp;Shasha Li,&nbsp;Lei Shao,&nbsp;Shao-Zhi Deng\",\"doi\":\"10.1186/s11671-025-04324-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep ultraviolet (DUV) nanophotonic technologies are of vital importance for applications in biomedical sensing, advanced lithography, light sources, and optoelectronic devices. Plasmonic nanostructures with DUV resonance properties can generate highly confined optical fields. They therefore have great potential in amplifying spectral signals from molecules with intense vibronic transitions in the DUV region and improving the sensitivity of solar-blind detection. However, practical applications of DUV plasmonic structures are hindered by challenges such as oxidation, photo-induced damage, high material loss, and costly fabrication. Herein, we employ hybrid Si Fabry-Pérot nanoresonators constructed from random Si nanodisk arrays and a Si mirror to improve the DUV plasmonic properties of individual Si nanostructures. The hybrid nanoresonators exhibit strong resonance modes that are tunable in the DUV regime, resulting from the coupling between nanodisk plasmon resonances and Fabry-Pérot cavity modes. In addition, we fabricate centimeter-scale nanoresonator arrays that support distinct DUV plasmon resonances using a low-cost hole-mask colloidal lithography method. We further demonstrate that the hybrid Si nanoresonator substrate can enhance the molecular ultraviolet photoluminescence by a factor of up to 2.7. By combining the advantages of Si nanodisks’ DUV localized surface plasmon and Fabry-Pérot cavity resonances, our design offers a promising platform for molecular detection, solar-blind photodetection, and biosensing.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04324-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04324-5\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04324-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

深紫外(DUV)纳米光子技术在生物医学传感、先进光刻、光源和光电子器件等领域的应用具有重要意义。具有DUV共振特性的等离子体纳米结构可以产生高度受限的光场。因此,它们在放大DUV区具有强烈振动跃迁的分子的光谱信号和提高太阳盲探测的灵敏度方面具有很大的潜力。然而,DUV等离子体结构的实际应用受到氧化、光致损伤、高材料损耗和昂贵制造成本等挑战的阻碍。本文采用由随机硅纳米磁盘阵列和硅镜面组成的混合硅法布里- p纳米谐振器来改善单个硅纳米结构的DUV等离子体特性。由于纳米盘等离子体共振和法布里-帕姆罗腔模式之间的耦合,混合纳米谐振器表现出在DUV区可调谐的强共振模式。此外,我们制造厘米级的纳米谐振器阵列,支持不同的DUV等离子体共振,使用低成本的孔掩膜胶体光刻方法。我们进一步证明了混合硅纳米谐振器衬底可以将分子的紫外光致发光增强高达2.7倍。我们的设计结合了硅纳米片DUV局域表面等离子体和fabry - psamrot腔共振的优势,为分子检测、太阳盲光检测和生物传感提供了一个有前途的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep-ultraviolet plasmon resonances on hybrid Si nanostructures for photoluminescence enhancement

Deep ultraviolet (DUV) nanophotonic technologies are of vital importance for applications in biomedical sensing, advanced lithography, light sources, and optoelectronic devices. Plasmonic nanostructures with DUV resonance properties can generate highly confined optical fields. They therefore have great potential in amplifying spectral signals from molecules with intense vibronic transitions in the DUV region and improving the sensitivity of solar-blind detection. However, practical applications of DUV plasmonic structures are hindered by challenges such as oxidation, photo-induced damage, high material loss, and costly fabrication. Herein, we employ hybrid Si Fabry-Pérot nanoresonators constructed from random Si nanodisk arrays and a Si mirror to improve the DUV plasmonic properties of individual Si nanostructures. The hybrid nanoresonators exhibit strong resonance modes that are tunable in the DUV regime, resulting from the coupling between nanodisk plasmon resonances and Fabry-Pérot cavity modes. In addition, we fabricate centimeter-scale nanoresonator arrays that support distinct DUV plasmon resonances using a low-cost hole-mask colloidal lithography method. We further demonstrate that the hybrid Si nanoresonator substrate can enhance the molecular ultraviolet photoluminescence by a factor of up to 2.7. By combining the advantages of Si nanodisks’ DUV localized surface plasmon and Fabry-Pérot cavity resonances, our design offers a promising platform for molecular detection, solar-blind photodetection, and biosensing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信