利用PIV速度场测定气动力

IF 2.5 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Colin Stutz, Samuel Rovani, Douglas Bohl, John Hrynuk
{"title":"利用PIV速度场测定气动力","authors":"Colin Stutz,&nbsp;Samuel Rovani,&nbsp;Douglas Bohl,&nbsp;John Hrynuk","doi":"10.1007/s00348-025-04096-9","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional methods for directly measuring aerodynamic forces are particularly challenging at low Reynolds numbers due to the low dynamic pressures. This becomes even more challenging when rapid motions of the test articles are present, with inertial forces often larger than the aerodynamic forces. Existing methods for calculating pressure fields from experimental vector fields, such as those measured using particle image velocimetry (PIV), have constraints that make them difficult or impossible to apply to data sets that do not meet certain conditions, such as boundary condition requirements or restrictions on the grid shape of the data. This paper describes a new method of determining surface pressures and aerodynamic forces using experimentally collected velocity field data. This method leverages field erosion to constrain a point-stepping spatial integration of the pressure gradient field. A systematic method for dividing the flow field into zones based on the vorticity of the flow and the known geometry of the experiment allows for pressure in less-disturbed portions of the flow to be calculated and used as the boundary conditions for more unsteady flow regions. Surface pressures are then extracted from on or near the surface and integrated to calculate lift and drag. Two data sets are used as validation cases: a pitch-and-hold dynamic stall and static lift around an airfoil, both at low Reynolds number. The pressure-derived lift curves compare favorably with the reference data sets, demonstrating the accuracy of the new method.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of aerodynamic forces using PIV velocity fields\",\"authors\":\"Colin Stutz,&nbsp;Samuel Rovani,&nbsp;Douglas Bohl,&nbsp;John Hrynuk\",\"doi\":\"10.1007/s00348-025-04096-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional methods for directly measuring aerodynamic forces are particularly challenging at low Reynolds numbers due to the low dynamic pressures. This becomes even more challenging when rapid motions of the test articles are present, with inertial forces often larger than the aerodynamic forces. Existing methods for calculating pressure fields from experimental vector fields, such as those measured using particle image velocimetry (PIV), have constraints that make them difficult or impossible to apply to data sets that do not meet certain conditions, such as boundary condition requirements or restrictions on the grid shape of the data. This paper describes a new method of determining surface pressures and aerodynamic forces using experimentally collected velocity field data. This method leverages field erosion to constrain a point-stepping spatial integration of the pressure gradient field. A systematic method for dividing the flow field into zones based on the vorticity of the flow and the known geometry of the experiment allows for pressure in less-disturbed portions of the flow to be calculated and used as the boundary conditions for more unsteady flow regions. Surface pressures are then extracted from on or near the surface and integrated to calculate lift and drag. Two data sets are used as validation cases: a pitch-and-hold dynamic stall and static lift around an airfoil, both at low Reynolds number. The pressure-derived lift curves compare favorably with the reference data sets, demonstrating the accuracy of the new method.</p></div>\",\"PeriodicalId\":554,\"journal\":{\"name\":\"Experiments in Fluids\",\"volume\":\"66 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experiments in Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00348-025-04096-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-04096-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在低雷诺数条件下,由于动压较低,直接测量气动力的传统方法尤其具有挑战性。当测试物品的快速运动存在时,这变得更具挑战性,惯性力通常大于空气动力。现有的从实验向量场计算压力场的方法,例如使用粒子图像测速法(PIV)测量的方法,有一些限制,使得它们很难或不可能应用于不满足某些条件的数据集,例如边界条件要求或数据网格形状的限制。本文介绍了一种利用实验采集的速度场数据确定表面压力和气动力的新方法。该方法利用场侵蚀来约束压力梯度场的点步空间积分。根据流动的涡度和已知的实验几何形状,有一种系统的方法可以将流场划分为不同的区域,从而可以计算出流动中受干扰较少部分的压力,并将其用作更不稳定流动区域的边界条件。然后从表面或表面附近提取表面压力,并将其集成以计算升力和阻力。两个数据集被用作验证案例:俯仰和保持的动态失速和机翼周围的静态升力,都是在低雷诺数。压力衍生的升力曲线与参考数据集比较良好,证明了新方法的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determination of aerodynamic forces using PIV velocity fields

Determination of aerodynamic forces using PIV velocity fields

Determination of aerodynamic forces using PIV velocity fields

Traditional methods for directly measuring aerodynamic forces are particularly challenging at low Reynolds numbers due to the low dynamic pressures. This becomes even more challenging when rapid motions of the test articles are present, with inertial forces often larger than the aerodynamic forces. Existing methods for calculating pressure fields from experimental vector fields, such as those measured using particle image velocimetry (PIV), have constraints that make them difficult or impossible to apply to data sets that do not meet certain conditions, such as boundary condition requirements or restrictions on the grid shape of the data. This paper describes a new method of determining surface pressures and aerodynamic forces using experimentally collected velocity field data. This method leverages field erosion to constrain a point-stepping spatial integration of the pressure gradient field. A systematic method for dividing the flow field into zones based on the vorticity of the flow and the known geometry of the experiment allows for pressure in less-disturbed portions of the flow to be calculated and used as the boundary conditions for more unsteady flow regions. Surface pressures are then extracted from on or near the surface and integrated to calculate lift and drag. Two data sets are used as validation cases: a pitch-and-hold dynamic stall and static lift around an airfoil, both at low Reynolds number. The pressure-derived lift curves compare favorably with the reference data sets, demonstrating the accuracy of the new method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信