{"title":"用先进的迟滞模型分析地震后永久位移和最大位移的关系","authors":"Panagiota Katsimpini","doi":"10.1007/s10518-025-02215-9","DOIUrl":null,"url":null,"abstract":"<div><p>Implementing advanced material-specific hysteretic models in structural analysis has opened new possibilities for post-earthquake damage assessment. This study introduces a novel methodology for estimating maximum seismic displacements utilizing the Takeda model for reinforced concrete and the AlBermani model for steel structures in single-degree-of-freedom systems. The research establishes correlations between residual and maximum displacements based on an extensive series of numerical simulations incorporating far-field and near-fault earthquake records. The developed mathematical relationships account for the distinct hysteretic behavior of different structural materials, providing a practical tool for post-earthquake evaluation. Field measurements of residual deformations can be directly applied to these relationships, enabling rapid assessment of maximum displacement demands experienced during seismic events. Statistical validation demonstrates the reliability of the proposed approach across various ground motion characteristics and structural parameters.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 10","pages":"4159 - 4186"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical relationships between permanent and maximum displacements for post-earthquake evaluation using advanced hysteretic models\",\"authors\":\"Panagiota Katsimpini\",\"doi\":\"10.1007/s10518-025-02215-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Implementing advanced material-specific hysteretic models in structural analysis has opened new possibilities for post-earthquake damage assessment. This study introduces a novel methodology for estimating maximum seismic displacements utilizing the Takeda model for reinforced concrete and the AlBermani model for steel structures in single-degree-of-freedom systems. The research establishes correlations between residual and maximum displacements based on an extensive series of numerical simulations incorporating far-field and near-fault earthquake records. The developed mathematical relationships account for the distinct hysteretic behavior of different structural materials, providing a practical tool for post-earthquake evaluation. Field measurements of residual deformations can be directly applied to these relationships, enabling rapid assessment of maximum displacement demands experienced during seismic events. Statistical validation demonstrates the reliability of the proposed approach across various ground motion characteristics and structural parameters.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"23 10\",\"pages\":\"4159 - 4186\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-025-02215-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-025-02215-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Analytical relationships between permanent and maximum displacements for post-earthquake evaluation using advanced hysteretic models
Implementing advanced material-specific hysteretic models in structural analysis has opened new possibilities for post-earthquake damage assessment. This study introduces a novel methodology for estimating maximum seismic displacements utilizing the Takeda model for reinforced concrete and the AlBermani model for steel structures in single-degree-of-freedom systems. The research establishes correlations between residual and maximum displacements based on an extensive series of numerical simulations incorporating far-field and near-fault earthquake records. The developed mathematical relationships account for the distinct hysteretic behavior of different structural materials, providing a practical tool for post-earthquake evaluation. Field measurements of residual deformations can be directly applied to these relationships, enabling rapid assessment of maximum displacement demands experienced during seismic events. Statistical validation demonstrates the reliability of the proposed approach across various ground motion characteristics and structural parameters.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.