{"title":"振动台试验与数值模拟研究损伤与加固对钢筋混凝土框架动力性能的影响","authors":"Abdulhamit Nakipoglu, Mahmud Sami Donduren","doi":"10.1007/s10518-025-02214-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an investigation on the effects of damage and strengthening on the dynamic behavior of buildings. Forced vibration tests were carried out on the shake table of two 1/3 scale, 3D, 2-story, single-span reinforced concrete frame specimens produced in laboratory. The damage was created by weakening the joint areas. Then the damaged zones were repaired and strengthening methods using in-plane reinforced concrete shear walls and X-shaped steel diagonal bracings were applied. The aim here is to perform a dynamic-based performance evaluation of these two commonly used global systemic strengthening techniques in practice. A total of more than 105 forced vibration experiments were carried out under 4 different intensities of dynamic load in different conditions of the specimens. Dynamic parameters were determined with the experimental modal analysis method. Moreover, story displacements time history, base shears time history, base shear-top displacement hysteresis curves, and lateral translational stiffnesses were obtained. In addition, numerical analyses using ETABS finite element software were also conducted. As a result, it was observed that the damage reduced the lateral translational stiffnesses by about 50%, steel bracings increased the stiffness in the damaged condition by 147% and RC shear walls increased it by 381%. On average, the 1st natural frequency decreased by 36.5% in the damaged conditions, increased by 83% in the strengthened conditions compared to the damaged conditions. Strengthening of the members tends to limit the soft story behavior. In general, although its application is difficult, the best performance in all studied parameters was obtained from the specimen strengthened with in-plane reinforced concrete shear walls.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 10","pages":"3923 - 3951"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10518-025-02214-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Shake table experiments and numerical simulation on the effects of damage and strengthening on dynamic behavior of RC frames\",\"authors\":\"Abdulhamit Nakipoglu, Mahmud Sami Donduren\",\"doi\":\"10.1007/s10518-025-02214-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents an investigation on the effects of damage and strengthening on the dynamic behavior of buildings. Forced vibration tests were carried out on the shake table of two 1/3 scale, 3D, 2-story, single-span reinforced concrete frame specimens produced in laboratory. The damage was created by weakening the joint areas. Then the damaged zones were repaired and strengthening methods using in-plane reinforced concrete shear walls and X-shaped steel diagonal bracings were applied. The aim here is to perform a dynamic-based performance evaluation of these two commonly used global systemic strengthening techniques in practice. A total of more than 105 forced vibration experiments were carried out under 4 different intensities of dynamic load in different conditions of the specimens. Dynamic parameters were determined with the experimental modal analysis method. Moreover, story displacements time history, base shears time history, base shear-top displacement hysteresis curves, and lateral translational stiffnesses were obtained. In addition, numerical analyses using ETABS finite element software were also conducted. As a result, it was observed that the damage reduced the lateral translational stiffnesses by about 50%, steel bracings increased the stiffness in the damaged condition by 147% and RC shear walls increased it by 381%. On average, the 1st natural frequency decreased by 36.5% in the damaged conditions, increased by 83% in the strengthened conditions compared to the damaged conditions. Strengthening of the members tends to limit the soft story behavior. In general, although its application is difficult, the best performance in all studied parameters was obtained from the specimen strengthened with in-plane reinforced concrete shear walls.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"23 10\",\"pages\":\"3923 - 3951\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10518-025-02214-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-025-02214-w\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-025-02214-w","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Shake table experiments and numerical simulation on the effects of damage and strengthening on dynamic behavior of RC frames
This study presents an investigation on the effects of damage and strengthening on the dynamic behavior of buildings. Forced vibration tests were carried out on the shake table of two 1/3 scale, 3D, 2-story, single-span reinforced concrete frame specimens produced in laboratory. The damage was created by weakening the joint areas. Then the damaged zones were repaired and strengthening methods using in-plane reinforced concrete shear walls and X-shaped steel diagonal bracings were applied. The aim here is to perform a dynamic-based performance evaluation of these two commonly used global systemic strengthening techniques in practice. A total of more than 105 forced vibration experiments were carried out under 4 different intensities of dynamic load in different conditions of the specimens. Dynamic parameters were determined with the experimental modal analysis method. Moreover, story displacements time history, base shears time history, base shear-top displacement hysteresis curves, and lateral translational stiffnesses were obtained. In addition, numerical analyses using ETABS finite element software were also conducted. As a result, it was observed that the damage reduced the lateral translational stiffnesses by about 50%, steel bracings increased the stiffness in the damaged condition by 147% and RC shear walls increased it by 381%. On average, the 1st natural frequency decreased by 36.5% in the damaged conditions, increased by 83% in the strengthened conditions compared to the damaged conditions. Strengthening of the members tends to limit the soft story behavior. In general, although its application is difficult, the best performance in all studied parameters was obtained from the specimen strengthened with in-plane reinforced concrete shear walls.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.