Xuelei Feng;Tianhao Wen;Xiaohan Liu;Yang Liu;Q. H. Wu
{"title":"基于级联高增益状态和扰动观测器的串联补偿DFIG风电场SSR缓解","authors":"Xuelei Feng;Tianhao Wen;Xiaohan Liu;Yang Liu;Q. H. Wu","doi":"10.17775/CSEEJPES.2024.02520","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel cascaded high-gain state and perturbation observer (CHGSPO)-based feedback linearization control (FLC) strategy for mitigating the sub-synchronous resonance (SSR) caused by the interactions between the series capacitor and doubly-fed induction generator-based wind farms (DFIGWFs). The CHGSPO is designed to estimate both the state and nonlinear perturbations of the series-compensated DFIGWF system. The nonlinear perturbation contains the disturbance originated from SSR, nonlinearities and uncertainties of the system model. The estimated state and perturbations are used by the FLC to eliminate the nonlinearities of the system and realize complete decoupling control of the DFIGWF. Additionally, the FLC effectively suppresses oscillatory signals detected by the CHGSPO. The proposed CHGSPO-based FLC exhibits remarkable robustness against uncertainties and external disturbances. The results of modal analysis and time domain simulations demonstrate the effectiveness of the proposed control strategy in SSR mitigation of the series-compensated DFIGWF system.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 4","pages":"1582-1595"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11006461","citationCount":"0","resultStr":"{\"title\":\"Mitigating SSR of Series-Compensated DFIG Wind Farms Based on Cascaded High-Gain State and Perturbation Observers\",\"authors\":\"Xuelei Feng;Tianhao Wen;Xiaohan Liu;Yang Liu;Q. H. Wu\",\"doi\":\"10.17775/CSEEJPES.2024.02520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel cascaded high-gain state and perturbation observer (CHGSPO)-based feedback linearization control (FLC) strategy for mitigating the sub-synchronous resonance (SSR) caused by the interactions between the series capacitor and doubly-fed induction generator-based wind farms (DFIGWFs). The CHGSPO is designed to estimate both the state and nonlinear perturbations of the series-compensated DFIGWF system. The nonlinear perturbation contains the disturbance originated from SSR, nonlinearities and uncertainties of the system model. The estimated state and perturbations are used by the FLC to eliminate the nonlinearities of the system and realize complete decoupling control of the DFIGWF. Additionally, the FLC effectively suppresses oscillatory signals detected by the CHGSPO. The proposed CHGSPO-based FLC exhibits remarkable robustness against uncertainties and external disturbances. The results of modal analysis and time domain simulations demonstrate the effectiveness of the proposed control strategy in SSR mitigation of the series-compensated DFIGWF system.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":\"11 4\",\"pages\":\"1582-1595\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11006461\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11006461/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11006461/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Mitigating SSR of Series-Compensated DFIG Wind Farms Based on Cascaded High-Gain State and Perturbation Observers
This paper proposes a novel cascaded high-gain state and perturbation observer (CHGSPO)-based feedback linearization control (FLC) strategy for mitigating the sub-synchronous resonance (SSR) caused by the interactions between the series capacitor and doubly-fed induction generator-based wind farms (DFIGWFs). The CHGSPO is designed to estimate both the state and nonlinear perturbations of the series-compensated DFIGWF system. The nonlinear perturbation contains the disturbance originated from SSR, nonlinearities and uncertainties of the system model. The estimated state and perturbations are used by the FLC to eliminate the nonlinearities of the system and realize complete decoupling control of the DFIGWF. Additionally, the FLC effectively suppresses oscillatory signals detected by the CHGSPO. The proposed CHGSPO-based FLC exhibits remarkable robustness against uncertainties and external disturbances. The results of modal analysis and time domain simulations demonstrate the effectiveness of the proposed control strategy in SSR mitigation of the series-compensated DFIGWF system.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.