基于深度学习的稀疏恢复和字典匹配多路径时延估计

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS
Yipeng Li;Keke Hu;Manyu Xue;Yuan Shen
{"title":"基于深度学习的稀疏恢复和字典匹配多路径时延估计","authors":"Yipeng Li;Keke Hu;Manyu Xue;Yuan Shen","doi":"10.1109/LCOMM.2025.3580559","DOIUrl":null,"url":null,"abstract":"Wireless channel responses contain rich multipath information, but accurately extracting this information remains challenging in complex indoor environments. In this letter, we propose a deep learning-based sparse recovery method for super-resolution multipath time delay estimation and dictionary mismatch mitigation in sparse modeling. The proposed DenoisingCNN framework recovers the sparse delay spectrum from the channel response with highly overlapping multipath components with three specialized modules to address dictionary mismatch. Numerical results demonstrate that the proposed method outperforms state-of-the-art approaches in the estimation of both the number and delays of the multipath components, offering robustness and strong generalization capabilities.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 8","pages":"1933-1937"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-Based Sparse Recovery and Dictionary Matching for Multipath Time Delay Estimation\",\"authors\":\"Yipeng Li;Keke Hu;Manyu Xue;Yuan Shen\",\"doi\":\"10.1109/LCOMM.2025.3580559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless channel responses contain rich multipath information, but accurately extracting this information remains challenging in complex indoor environments. In this letter, we propose a deep learning-based sparse recovery method for super-resolution multipath time delay estimation and dictionary mismatch mitigation in sparse modeling. The proposed DenoisingCNN framework recovers the sparse delay spectrum from the channel response with highly overlapping multipath components with three specialized modules to address dictionary mismatch. Numerical results demonstrate that the proposed method outperforms state-of-the-art approaches in the estimation of both the number and delays of the multipath components, offering robustness and strong generalization capabilities.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 8\",\"pages\":\"1933-1937\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11037772/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11037772/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

无线信道响应包含丰富的多径信息,但在复杂的室内环境中准确提取这些信息仍然具有挑战性。在这封信中,我们提出了一种基于深度学习的稀疏恢复方法,用于超分辨率多路径时延估计和稀疏建模中的字典不匹配缓解。提出的去噪cnn框架利用三个专用模块从具有高度重叠多径分量的信道响应中恢复稀疏延迟频谱,以解决字典不匹配问题。数值结果表明,该方法在估计多径分量的数量和延迟方面优于现有方法,具有鲁棒性和较强的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-Based Sparse Recovery and Dictionary Matching for Multipath Time Delay Estimation
Wireless channel responses contain rich multipath information, but accurately extracting this information remains challenging in complex indoor environments. In this letter, we propose a deep learning-based sparse recovery method for super-resolution multipath time delay estimation and dictionary mismatch mitigation in sparse modeling. The proposed DenoisingCNN framework recovers the sparse delay spectrum from the channel response with highly overlapping multipath components with three specialized modules to address dictionary mismatch. Numerical results demonstrate that the proposed method outperforms state-of-the-art approaches in the estimation of both the number and delays of the multipath components, offering robustness and strong generalization capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信