CMOS-MEMS双间隙电容式换能器的开发、表征及性能提升

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kuan-Yi Lu;Chang-Lin Hu;Chien-Ju Li;Hung-Yu Chen;Sheng-Shian Li
{"title":"CMOS-MEMS双间隙电容式换能器的开发、表征及性能提升","authors":"Kuan-Yi Lu;Chang-Lin Hu;Chien-Ju Li;Hung-Yu Chen;Sheng-Shian Li","doi":"10.1109/LSENS.2025.3593225","DOIUrl":null,"url":null,"abstract":"This study proposes a platform for designing microelectromechanical system (MEMS) capacitive transducers, utilizing conventional 0.18 µm 1-Poly-6-Metal complementary metal-oxide-semiconductor (CMOS) technology to realize dual transduction gap sizes. As capacitive transducers, different transduction gap sizes come with their respective advantages and disadvantages, often requiring designers to make tradeoffs among various performance metrics. The proposed CMOS-MEMS platform provides two transduction gap sizes on a single chip, demonstrating excellent circuit integration capabilities. This design is based on partial etching technology applied to the back-end-of-line metal layers, and uses a titanium nitride antireflective coating as the electrode, enabling the simultaneous fabrication of 125 and 450 nm transduction gaps without damaging the integrated circuits. In addition, the study proposes a dc bias inversion technique to enhance the transmission performance of ultrasonic transducers, which is validated through ultrasonic water tank experiments.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 9","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development, Characterization, and Performance Enhancement of CMOS-MEMS Dual-Gap Capacitive Transducers\",\"authors\":\"Kuan-Yi Lu;Chang-Lin Hu;Chien-Ju Li;Hung-Yu Chen;Sheng-Shian Li\",\"doi\":\"10.1109/LSENS.2025.3593225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a platform for designing microelectromechanical system (MEMS) capacitive transducers, utilizing conventional 0.18 µm 1-Poly-6-Metal complementary metal-oxide-semiconductor (CMOS) technology to realize dual transduction gap sizes. As capacitive transducers, different transduction gap sizes come with their respective advantages and disadvantages, often requiring designers to make tradeoffs among various performance metrics. The proposed CMOS-MEMS platform provides two transduction gap sizes on a single chip, demonstrating excellent circuit integration capabilities. This design is based on partial etching technology applied to the back-end-of-line metal layers, and uses a titanium nitride antireflective coating as the electrode, enabling the simultaneous fabrication of 125 and 450 nm transduction gaps without damaging the integrated circuits. In addition, the study proposes a dc bias inversion technique to enhance the transmission performance of ultrasonic transducers, which is validated through ultrasonic water tank experiments.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 9\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11098634/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11098634/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个设计微机电系统(MEMS)电容式换能器的平台,利用传统的0.18µm 1-聚6-金属互补金属氧化物半导体(CMOS)技术来实现双导隙尺寸。作为电容式换能器,不同的换能器间隙尺寸具有各自的优点和缺点,通常需要设计人员在各种性能指标之间进行权衡。提出的CMOS-MEMS平台在单个芯片上提供两种转导间隙尺寸,展示了出色的电路集成能力。该设计基于后端金属层的部分蚀刻技术,并使用氮化钛抗反射涂层作为电极,可以在不损坏集成电路的情况下同时制造125和450 nm的转导间隙。此外,本研究提出了一种直流偏置反转技术来提高超声波换能器的传输性能,并通过超声波水箱实验进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development, Characterization, and Performance Enhancement of CMOS-MEMS Dual-Gap Capacitive Transducers
This study proposes a platform for designing microelectromechanical system (MEMS) capacitive transducers, utilizing conventional 0.18 µm 1-Poly-6-Metal complementary metal-oxide-semiconductor (CMOS) technology to realize dual transduction gap sizes. As capacitive transducers, different transduction gap sizes come with their respective advantages and disadvantages, often requiring designers to make tradeoffs among various performance metrics. The proposed CMOS-MEMS platform provides two transduction gap sizes on a single chip, demonstrating excellent circuit integration capabilities. This design is based on partial etching technology applied to the back-end-of-line metal layers, and uses a titanium nitride antireflective coating as the electrode, enabling the simultaneous fabrication of 125 and 450 nm transduction gaps without damaging the integrated circuits. In addition, the study proposes a dc bias inversion technique to enhance the transmission performance of ultrasonic transducers, which is validated through ultrasonic water tank experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信