基于H2最优约简的深对角状态空间模型压缩方法

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Hiroki Sakamoto;Kazuhiro Sato
{"title":"基于H2最优约简的深对角状态空间模型压缩方法","authors":"Hiroki Sakamoto;Kazuhiro Sato","doi":"10.1109/LCSYS.2025.3591023","DOIUrl":null,"url":null,"abstract":"Deep learning models incorporating linear SSMs have gained attention for capturing long-range dependencies in sequential data. However, their large parameter sizes pose challenges for deployment on resource-constrained devices. In this letter, we propose an efficient parameter reduction method for these models by applying <inline-formula> <tex-math>$\\mathcal {H}^{2}$ </tex-math></inline-formula> model order reduction techniques from control theory to their linear SSM components. In experiments, the LRA benchmark results show that the model compression based on our proposed method outperforms an existing method using the Balanced Truncation, while successfully reducing the number of parameters in the SSMs to <inline-formula> <tex-math>$1/32$ </tex-math></inline-formula> without sacrificing the performance of the original models.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2043-2048"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compression Method for Deep Diagonal State Space Model Based on H2 Optimal Reduction\",\"authors\":\"Hiroki Sakamoto;Kazuhiro Sato\",\"doi\":\"10.1109/LCSYS.2025.3591023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models incorporating linear SSMs have gained attention for capturing long-range dependencies in sequential data. However, their large parameter sizes pose challenges for deployment on resource-constrained devices. In this letter, we propose an efficient parameter reduction method for these models by applying <inline-formula> <tex-math>$\\\\mathcal {H}^{2}$ </tex-math></inline-formula> model order reduction techniques from control theory to their linear SSM components. In experiments, the LRA benchmark results show that the model compression based on our proposed method outperforms an existing method using the Balanced Truncation, while successfully reducing the number of parameters in the SSMs to <inline-formula> <tex-math>$1/32$ </tex-math></inline-formula> without sacrificing the performance of the original models.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"2043-2048\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11087219/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11087219/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

包含线性ssm的深度学习模型因捕获序列数据中的长期依赖关系而受到关注。然而,它们的大参数尺寸为在资源受限的设备上部署带来了挑战。在这封信中,我们提出了一种有效的参数约简方法,通过将$\mathcal {H}^{2}$模型阶数约简技术从控制理论应用到它们的线性SSM组件。在实验中,LRA基准测试结果表明,基于该方法的模型压缩优于使用平衡截断的现有方法,同时在不牺牲原始模型性能的情况下,成功地将ssm中的参数数量减少到$1/32$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compression Method for Deep Diagonal State Space Model Based on H2 Optimal Reduction
Deep learning models incorporating linear SSMs have gained attention for capturing long-range dependencies in sequential data. However, their large parameter sizes pose challenges for deployment on resource-constrained devices. In this letter, we propose an efficient parameter reduction method for these models by applying $\mathcal {H}^{2}$ model order reduction techniques from control theory to their linear SSM components. In experiments, the LRA benchmark results show that the model compression based on our proposed method outperforms an existing method using the Balanced Truncation, while successfully reducing the number of parameters in the SSMs to $1/32$ without sacrificing the performance of the original models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信