不确定条件下多机器人交互的机会约束线性二次高斯对策

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Kai Ren;Giulio Salizzoni;Mustafa Emre Gürsoy;Maryam Kamgarpour
{"title":"不确定条件下多机器人交互的机会约束线性二次高斯对策","authors":"Kai Ren;Giulio Salizzoni;Mustafa Emre Gürsoy;Maryam Kamgarpour","doi":"10.1109/LCSYS.2025.3588090","DOIUrl":null,"url":null,"abstract":"We address safe multi-robot interaction under uncertainty. In particular, we formulate a chance-constrained linear quadratic Gaussian game with coupling constraints and system uncertainties. We find a tractable reformulation of the game and propose a dual ascent algorithm. We prove that the algorithm converges to a feedback generalized Nash equilibrium of the reformulated game, ensuring the satisfaction of the chance constraints. We test our method in driving simulations and real-world robot experiments. Our method ensures safety under uncertainty and generates less conservative trajectories than single-agent model predictive control.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2061-2066"},"PeriodicalIF":2.0000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chance-Constrained Linear Quadratic Gaussian Games for Multi-Robot Interaction Under Uncertainty\",\"authors\":\"Kai Ren;Giulio Salizzoni;Mustafa Emre Gürsoy;Maryam Kamgarpour\",\"doi\":\"10.1109/LCSYS.2025.3588090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address safe multi-robot interaction under uncertainty. In particular, we formulate a chance-constrained linear quadratic Gaussian game with coupling constraints and system uncertainties. We find a tractable reformulation of the game and propose a dual ascent algorithm. We prove that the algorithm converges to a feedback generalized Nash equilibrium of the reformulated game, ensuring the satisfaction of the chance constraints. We test our method in driving simulations and real-world robot experiments. Our method ensures safety under uncertainty and generates less conservative trajectories than single-agent model predictive control.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":\"9 \",\"pages\":\"2061-2066\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11077446/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11077446/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了不确定条件下的多机器人安全交互问题。特别地,我们构造了一个具有耦合约束和系统不确定性的机会约束线性二次高斯对策。我们找到了一个易于处理的游戏的重新表述,并提出了一个双重上升算法。证明了该算法收敛于重新表述的对策的反馈广义纳什均衡,保证了机会约束的满足。我们在驾驶模拟和真实世界的机器人实验中测试了我们的方法。与单智能体模型预测控制相比,该方法既保证了不确定性下的安全性,又产生了更小的保守轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chance-Constrained Linear Quadratic Gaussian Games for Multi-Robot Interaction Under Uncertainty
We address safe multi-robot interaction under uncertainty. In particular, we formulate a chance-constrained linear quadratic Gaussian game with coupling constraints and system uncertainties. We find a tractable reformulation of the game and propose a dual ascent algorithm. We prove that the algorithm converges to a feedback generalized Nash equilibrium of the reformulated game, ensuring the satisfaction of the chance constraints. We test our method in driving simulations and real-world robot experiments. Our method ensures safety under uncertainty and generates less conservative trajectories than single-agent model predictive control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信