mec支持的无蜂窝大规模MIMO的延迟公平性:基于ICA和ai的方法

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS
Hieu V. Nguyen;Van-Phuc Bui;Mai T. P. Le;Vien Nguyen-Duy-Nhat;Hung Nguyen-Le;Nghi H. Tran
{"title":"mec支持的无蜂窝大规模MIMO的延迟公平性:基于ICA和ai的方法","authors":"Hieu V. Nguyen;Van-Phuc Bui;Mai T. P. Le;Vien Nguyen-Duy-Nhat;Hung Nguyen-Le;Nghi H. Tran","doi":"10.1109/LCOMM.2025.3581730","DOIUrl":null,"url":null,"abstract":"This letter investigates the latency minimization at the network edge in mobile edge computing (MEC)-enabled Cell-Free massive MIMO systems. We introduce a new edge computing model that integrates both task offloading and local execution. To minimize overall system latency while considering power allocation constraints, we formulate an optimization problem aimed at reducing maximum computing time. This mixed-integer non-convex problem is then reformulated into a more tractable form, which is solved using an iterative convex approximation method to achieve locally-optimal solutions. Additionally, we propose a convolutional neural network-based algorithm as an alternative solution to further improve system efficiency. Numerical results are provided to validate the theoretical framework and demonstrate the effectiveness of the proposed approaches in accelerating the data processing in MEC-enabled cell-free networks.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 8","pages":"1963-1967"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latency Fairness for MEC-Enabled Cell-Free Massive MIMO: ICA- and AI-Based Approaches\",\"authors\":\"Hieu V. Nguyen;Van-Phuc Bui;Mai T. P. Le;Vien Nguyen-Duy-Nhat;Hung Nguyen-Le;Nghi H. Tran\",\"doi\":\"10.1109/LCOMM.2025.3581730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter investigates the latency minimization at the network edge in mobile edge computing (MEC)-enabled Cell-Free massive MIMO systems. We introduce a new edge computing model that integrates both task offloading and local execution. To minimize overall system latency while considering power allocation constraints, we formulate an optimization problem aimed at reducing maximum computing time. This mixed-integer non-convex problem is then reformulated into a more tractable form, which is solved using an iterative convex approximation method to achieve locally-optimal solutions. Additionally, we propose a convolutional neural network-based algorithm as an alternative solution to further improve system efficiency. Numerical results are provided to validate the theoretical framework and demonstrate the effectiveness of the proposed approaches in accelerating the data processing in MEC-enabled cell-free networks.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 8\",\"pages\":\"1963-1967\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11045716/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11045716/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在移动边缘计算(MEC)支持的Cell-Free大规模MIMO系统中网络边缘的延迟最小化。我们介绍了一种集成了任务卸载和本地执行的新边缘计算模型。为了在考虑功率分配约束的同时最小化整个系统延迟,我们制定了一个旨在减少最大计算时间的优化问题。然后将该混合整数非凸问题重新表述为更易于处理的形式,并使用迭代凸逼近方法求解该问题以获得局部最优解。此外,我们提出了一种基于卷积神经网络的算法作为替代方案,以进一步提高系统效率。数值结果验证了理论框架,并证明了所提出的方法在加速mec支持的无蜂窝网络中数据处理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Latency Fairness for MEC-Enabled Cell-Free Massive MIMO: ICA- and AI-Based Approaches
This letter investigates the latency minimization at the network edge in mobile edge computing (MEC)-enabled Cell-Free massive MIMO systems. We introduce a new edge computing model that integrates both task offloading and local execution. To minimize overall system latency while considering power allocation constraints, we formulate an optimization problem aimed at reducing maximum computing time. This mixed-integer non-convex problem is then reformulated into a more tractable form, which is solved using an iterative convex approximation method to achieve locally-optimal solutions. Additionally, we propose a convolutional neural network-based algorithm as an alternative solution to further improve system efficiency. Numerical results are provided to validate the theoretical framework and demonstrate the effectiveness of the proposed approaches in accelerating the data processing in MEC-enabled cell-free networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信