采用可变介电常数衬底和非均匀贴片的双辐射层机械扫描漏波盒k波段天线

IF 3.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahmed Jasim;Mahdi Moosazadeh;Christophe Fumeaux;Amin Abbosh
{"title":"采用可变介电常数衬底和非均匀贴片的双辐射层机械扫描漏波盒k波段天线","authors":"Ahmed Jasim;Mahdi Moosazadeh;Christophe Fumeaux;Amin Abbosh","doi":"10.1109/OJAP.2025.3567968","DOIUrl":null,"url":null,"abstract":"A low-profile, high-gain leaky-wave pillbox K-band antenna with mechanical beam scanning is presented. The antenna consists of three layers: one feeding network layer and two radiating layers. A substrate-integrated waveguide wide-angle H-plane horn feed is connected to a one-dimensional reflector using vias rows, forming a closed pillbox reflector to prevent parasitic wave leakage. A simple coaxial feeding port is used to reduce the antenna’s complexity and cost. The middle substrate disk, made from two half-disk substrates with permittivities <inline-formula> <tex-math>${\\varepsilon}_{r1}{=}2.55$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\varepsilon}_{r2}{=}2.20$ </tex-math></inline-formula>, forms the bottom of the radiating structure and is separated from the top substrate layer with periodic leaky-wave radiating elements. Rotating the middle layer by 180° changes the leaky wave’s propagation, and thus shifts the beam direction. The top radiating layer has four sets of patches with different spacings in the disk’s four quadrants. Beam scanning is achieved by rotating the disk to activate each quadrant and thus shift the beam to four distinct elevation angles. Combining the rotation states of the two layers allows wide beam scanning in the elevation direction at eight different angles. Beam scanning in the azimuth direction can be realized using a rotary joint. The design was verified using the transverse resonance method and full wave simulations. A prototype with a size of <inline-formula> <tex-math>$340\\times 320\\times 5{\\mathrm {mm}}^{3}$ </tex-math></inline-formula> was built and tested in the 19.5 – 20.5 GHz frequency band, showing a beam scanning range of <inline-formula> <tex-math>$0- 43^{\\circ }$ </tex-math></inline-formula>, a realized gain of 25.7 dBi, −4 dB crossover levels, −27 dB cross-polarization level, and side lobe levels below −10 dB.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1188-1198"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10992681","citationCount":"0","resultStr":"{\"title\":\"Mechanically Scanned Leaky-Wave Pillbox K-Band Antenna With Dual Radiating Layers Using Variable Permittivity Substrate and Nonuniform Patches\",\"authors\":\"Ahmed Jasim;Mahdi Moosazadeh;Christophe Fumeaux;Amin Abbosh\",\"doi\":\"10.1109/OJAP.2025.3567968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-profile, high-gain leaky-wave pillbox K-band antenna with mechanical beam scanning is presented. The antenna consists of three layers: one feeding network layer and two radiating layers. A substrate-integrated waveguide wide-angle H-plane horn feed is connected to a one-dimensional reflector using vias rows, forming a closed pillbox reflector to prevent parasitic wave leakage. A simple coaxial feeding port is used to reduce the antenna’s complexity and cost. The middle substrate disk, made from two half-disk substrates with permittivities <inline-formula> <tex-math>${\\\\varepsilon}_{r1}{=}2.55$ </tex-math></inline-formula> and <inline-formula> <tex-math>${\\\\varepsilon}_{r2}{=}2.20$ </tex-math></inline-formula>, forms the bottom of the radiating structure and is separated from the top substrate layer with periodic leaky-wave radiating elements. Rotating the middle layer by 180° changes the leaky wave’s propagation, and thus shifts the beam direction. The top radiating layer has four sets of patches with different spacings in the disk’s four quadrants. Beam scanning is achieved by rotating the disk to activate each quadrant and thus shift the beam to four distinct elevation angles. Combining the rotation states of the two layers allows wide beam scanning in the elevation direction at eight different angles. Beam scanning in the azimuth direction can be realized using a rotary joint. The design was verified using the transverse resonance method and full wave simulations. A prototype with a size of <inline-formula> <tex-math>$340\\\\times 320\\\\times 5{\\\\mathrm {mm}}^{3}$ </tex-math></inline-formula> was built and tested in the 19.5 – 20.5 GHz frequency band, showing a beam scanning range of <inline-formula> <tex-math>$0- 43^{\\\\circ }$ </tex-math></inline-formula>, a realized gain of 25.7 dBi, −4 dB crossover levels, −27 dB cross-polarization level, and side lobe levels below −10 dB.\",\"PeriodicalId\":34267,\"journal\":{\"name\":\"IEEE Open Journal of Antennas and Propagation\",\"volume\":\"6 4\",\"pages\":\"1188-1198\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10992681\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Antennas and Propagation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10992681/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10992681/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种低轮廓、高增益的漏波碉堡k波段机械波束扫描天线。天线由三层组成:一层馈电网络层和两层辐射层。将基板集成波导广角h面喇叭馈电通过通孔排连接到一维反射器上,形成封闭的碉堡式反射器,防止寄生波泄漏。采用简单的同轴馈电口,降低了天线的复杂性和成本。中间衬底盘由两个介电常数为${\varepsilon}_{r1}{=}2.55$和${\varepsilon}_{r2}{=}2.20$的半盘衬底组成,构成辐射结构的底部,并与具有周期性漏波辐射元件的顶部衬底层分离。将中间层旋转180°会改变漏波的传播,从而改变光束的方向。顶部的辐射层在磁盘的四个象限中有四组不同间距的补丁。光束扫描是通过旋转磁盘来激活每个象限,从而将光束移动到四个不同的仰角来实现的。结合两层的旋转状态,可以在仰角方向上以八个不同的角度进行宽波束扫描。利用旋转接头可以实现方位角方向的波束扫描。采用横向共振法和全波仿真对设计进行了验证。构建了尺寸为340 × 320 × 5{\mathrm {mm}}^{3}$的原型,并在19.5 ~ 20.5 GHz频段进行了测试,结果表明,波束扫描范围为0 ~ 43^{\circ}$,实现增益为25.7 dBi,交叉电平为- 4 dB,交叉极化电平为- 27 dB,旁瓣电平低于- 10 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanically Scanned Leaky-Wave Pillbox K-Band Antenna With Dual Radiating Layers Using Variable Permittivity Substrate and Nonuniform Patches
A low-profile, high-gain leaky-wave pillbox K-band antenna with mechanical beam scanning is presented. The antenna consists of three layers: one feeding network layer and two radiating layers. A substrate-integrated waveguide wide-angle H-plane horn feed is connected to a one-dimensional reflector using vias rows, forming a closed pillbox reflector to prevent parasitic wave leakage. A simple coaxial feeding port is used to reduce the antenna’s complexity and cost. The middle substrate disk, made from two half-disk substrates with permittivities ${\varepsilon}_{r1}{=}2.55$ and ${\varepsilon}_{r2}{=}2.20$ , forms the bottom of the radiating structure and is separated from the top substrate layer with periodic leaky-wave radiating elements. Rotating the middle layer by 180° changes the leaky wave’s propagation, and thus shifts the beam direction. The top radiating layer has four sets of patches with different spacings in the disk’s four quadrants. Beam scanning is achieved by rotating the disk to activate each quadrant and thus shift the beam to four distinct elevation angles. Combining the rotation states of the two layers allows wide beam scanning in the elevation direction at eight different angles. Beam scanning in the azimuth direction can be realized using a rotary joint. The design was verified using the transverse resonance method and full wave simulations. A prototype with a size of $340\times 320\times 5{\mathrm {mm}}^{3}$ was built and tested in the 19.5 – 20.5 GHz frequency band, showing a beam scanning range of $0- 43^{\circ }$ , a realized gain of 25.7 dBi, −4 dB crossover levels, −27 dB cross-polarization level, and side lobe levels below −10 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信