Changxin Ding , Alex McDonough , Lilla Tóthmérész , Chi Ho Yuen
{"title":"正则拟阵的一致沙堆变形算法","authors":"Changxin Ding , Alex McDonough , Lilla Tóthmérész , Chi Ho Yuen","doi":"10.1016/j.ejc.2025.104218","DOIUrl":null,"url":null,"abstract":"<div><div>Every regular matroid is associated with a <em>sandpile group</em>, which acts simply transitively on the set of bases in various ways. Ganguly and the second author introduced the notion of <em>consistency</em> to describe classes of actions that respect deletion–contraction in a precise sense, and proved the consistency of rotor-routing torsors (and uniqueness thereof) for plane graphs.</div><div>In this work, we prove that the class of actions introduced by Backman, Baker, and the fourth author, is consistent for regular matroids. More precisely, we prove the consistency of its generalization given by Backman, Santos and the fourth author, and independently by the first author. This extends the above existence assertion, as well as makes progress on the goal of classifying all consistent actions.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"130 ","pages":"Article 104218"},"PeriodicalIF":0.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A consistent sandpile torsor algorithm for regular matroids\",\"authors\":\"Changxin Ding , Alex McDonough , Lilla Tóthmérész , Chi Ho Yuen\",\"doi\":\"10.1016/j.ejc.2025.104218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Every regular matroid is associated with a <em>sandpile group</em>, which acts simply transitively on the set of bases in various ways. Ganguly and the second author introduced the notion of <em>consistency</em> to describe classes of actions that respect deletion–contraction in a precise sense, and proved the consistency of rotor-routing torsors (and uniqueness thereof) for plane graphs.</div><div>In this work, we prove that the class of actions introduced by Backman, Baker, and the fourth author, is consistent for regular matroids. More precisely, we prove the consistency of its generalization given by Backman, Santos and the fourth author, and independently by the first author. This extends the above existence assertion, as well as makes progress on the goal of classifying all consistent actions.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":\"130 \",\"pages\":\"Article 104218\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669825001076\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825001076","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A consistent sandpile torsor algorithm for regular matroids
Every regular matroid is associated with a sandpile group, which acts simply transitively on the set of bases in various ways. Ganguly and the second author introduced the notion of consistency to describe classes of actions that respect deletion–contraction in a precise sense, and proved the consistency of rotor-routing torsors (and uniqueness thereof) for plane graphs.
In this work, we prove that the class of actions introduced by Backman, Baker, and the fourth author, is consistent for regular matroids. More precisely, we prove the consistency of its generalization given by Backman, Santos and the fourth author, and independently by the first author. This extends the above existence assertion, as well as makes progress on the goal of classifying all consistent actions.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.