对称群的中心化代数的带块

IF 0.8 2区 数学 Q2 MATHEMATICS
Matthew Fayers , Lorenzo Putignano
{"title":"对称群的中心化代数的带块","authors":"Matthew Fayers ,&nbsp;Lorenzo Putignano","doi":"10.1016/j.jalgebra.2025.07.042","DOIUrl":null,"url":null,"abstract":"<div><div>Suppose <span><math><mi>l</mi><mo>,</mo><mi>m</mi></math></span> are natural numbers with <figure><img></figure>, and <span><math><mi>F</mi></math></span> a field of characteristic <em>p</em>, and let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mo>,</mo><mi>m</mi></mrow><mrow><mi>F</mi></mrow></msubsup></math></span> denote the centraliser of the group algebra <span><math><mi>F</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> inside <span><math><mi>F</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. Ellers and Murray give a conjectured classification of the blocks of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mo>,</mo><mi>m</mi></mrow><mrow><mi>F</mi></mrow></msubsup></math></span>, in terms of the <em>p</em>-blocks of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. We prove this conjecture for a family of blocks that we call <em>ribbon blocks</em> and <em>belt blocks</em>. These are the blocks containing Specht modules labelled by skew-partitions having no repeated entries in their <em>p</em>-content.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 271-312"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ribbon blocks for centraliser algebras of symmetric groups\",\"authors\":\"Matthew Fayers ,&nbsp;Lorenzo Putignano\",\"doi\":\"10.1016/j.jalgebra.2025.07.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Suppose <span><math><mi>l</mi><mo>,</mo><mi>m</mi></math></span> are natural numbers with <figure><img></figure>, and <span><math><mi>F</mi></math></span> a field of characteristic <em>p</em>, and let <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mo>,</mo><mi>m</mi></mrow><mrow><mi>F</mi></mrow></msubsup></math></span> denote the centraliser of the group algebra <span><math><mi>F</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> inside <span><math><mi>F</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. Ellers and Murray give a conjectured classification of the blocks of <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mi>l</mi><mo>,</mo><mi>m</mi></mrow><mrow><mi>F</mi></mrow></msubsup></math></span>, in terms of the <em>p</em>-blocks of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>l</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>. We prove this conjecture for a family of blocks that we call <em>ribbon blocks</em> and <em>belt blocks</em>. These are the blocks containing Specht modules labelled by skew-partitions having no repeated entries in their <em>p</em>-content.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 271-312\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004582\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004582","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设l,m为自然数,F为特征为p的域,设Cl,mF为FSm内群代数FSl的中心子。埃勒斯和默里根据Sl和Sm的p块给出了Cl、mF块的推测分类。我们用一组块来证明这个猜想,我们称之为带状块和带状块。这些是包含Specht模块的块,这些模块由倾斜分区标记,其p-content中没有重复条目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ribbon blocks for centraliser algebras of symmetric groups
Suppose l,m are natural numbers with
, and F a field of characteristic p, and let Cl,mF denote the centraliser of the group algebra FSl inside FSm. Ellers and Murray give a conjectured classification of the blocks of Cl,mF, in terms of the p-blocks of Sl and Sm. We prove this conjecture for a family of blocks that we call ribbon blocks and belt blocks. These are the blocks containing Specht modules labelled by skew-partitions having no repeated entries in their p-content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信