Tied-boxed代数

IF 0.8 2区 数学 Q2 MATHEMATICS
Diego Arcis , Jorge Espinoza
{"title":"Tied-boxed代数","authors":"Diego Arcis ,&nbsp;Jorge Espinoza","doi":"10.1016/j.jalgebra.2025.07.039","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce two new algebras that we call <em>tied–boxed Hecke algebra</em> and <em>tied–boxed Temperley–Lieb algebra</em>. The first one is a subalgebra of the algebra of braids and ties introduced by Aicardi and Juyumaya, and the second one is a tied-version of the well known Temperley–Lieb algebra. We study their representation theory and give cellular bases for them. Furthermore, we explore a strong connection between the tied–boxed Temperley–Lieb algebra and the so-called partition Temperley–Lieb algebra given by Juyumaya. Also, we show that both structures inherit diagrammatic interpretations from a new class of monoids that we call <em>boxed ramified monoids</em>. Additionally, we give presentations for the singular part of the ramified symmetric monoid and for the boxed ramified monoid associated to the Brauer monoid.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 112-159"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tied–boxed algebras\",\"authors\":\"Diego Arcis ,&nbsp;Jorge Espinoza\",\"doi\":\"10.1016/j.jalgebra.2025.07.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce two new algebras that we call <em>tied–boxed Hecke algebra</em> and <em>tied–boxed Temperley–Lieb algebra</em>. The first one is a subalgebra of the algebra of braids and ties introduced by Aicardi and Juyumaya, and the second one is a tied-version of the well known Temperley–Lieb algebra. We study their representation theory and give cellular bases for them. Furthermore, we explore a strong connection between the tied–boxed Temperley–Lieb algebra and the so-called partition Temperley–Lieb algebra given by Juyumaya. Also, we show that both structures inherit diagrammatic interpretations from a new class of monoids that we call <em>boxed ramified monoids</em>. Additionally, we give presentations for the singular part of the ramified symmetric monoid and for the boxed ramified monoid associated to the Brauer monoid.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 112-159\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004545\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004545","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了两个新的代数,我们称之为捆绑盒Hecke代数和捆绑盒Temperley-Lieb代数。第一个是Aicardi和Juyumaya引入的辫子和领带代数的子代数,第二个是著名的坦波利-利布代数的一个捆绑版本。我们研究了它们的表征理论,并给出了它们的元胞基础。此外,我们还探讨了系框的Temperley-Lieb代数与Juyumaya给出的所谓分区的Temperley-Lieb代数之间的强联系。此外,我们还证明了这两种结构都继承了一类新的一元群的图解解释,我们称之为框化分支一元群。此外,我们给出了分支对称单峰的奇异部分以及与Brauer单峰相关的框化分支单峰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tied–boxed algebras
We introduce two new algebras that we call tied–boxed Hecke algebra and tied–boxed Temperley–Lieb algebra. The first one is a subalgebra of the algebra of braids and ties introduced by Aicardi and Juyumaya, and the second one is a tied-version of the well known Temperley–Lieb algebra. We study their representation theory and give cellular bases for them. Furthermore, we explore a strong connection between the tied–boxed Temperley–Lieb algebra and the so-called partition Temperley–Lieb algebra given by Juyumaya. Also, we show that both structures inherit diagrammatic interpretations from a new class of monoids that we call boxed ramified monoids. Additionally, we give presentations for the singular part of the ramified symmetric monoid and for the boxed ramified monoid associated to the Brauer monoid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信