残差交集与舒伯特变异

IF 0.8 2区 数学 Q2 MATHEMATICS
Sara Angela Filippini , Xianglong Ni , Jacinta Torres , Jerzy Weyman
{"title":"残差交集与舒伯特变异","authors":"Sara Angela Filippini ,&nbsp;Xianglong Ni ,&nbsp;Jacinta Torres ,&nbsp;Jerzy Weyman","doi":"10.1016/j.jalgebra.2025.07.034","DOIUrl":null,"url":null,"abstract":"<div><div>Inspired by the work of Ulrich <span><span>[26]</span></span> and Huneke–Ulrich <span><span>[25]</span></span>, we describe a pattern to show that the ideals of certain opposite embedded Schubert varieties (defined by this pattern) arise by taking residual intersections of two (geometrically linked) opposite Schubert varieties which we call <em>Ulrich pair</em>. This pattern is uniform for the ADE types. Some of the free resolutions of the Schubert varieties in question are important for the structure of finite free resolutions. Our proof is representation theoretical and uniform for our pattern, however it is possible to derive our results using case-by-case analysis and the aid of a computer.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 62-85"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Residual intersections and Schubert varieties\",\"authors\":\"Sara Angela Filippini ,&nbsp;Xianglong Ni ,&nbsp;Jacinta Torres ,&nbsp;Jerzy Weyman\",\"doi\":\"10.1016/j.jalgebra.2025.07.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Inspired by the work of Ulrich <span><span>[26]</span></span> and Huneke–Ulrich <span><span>[25]</span></span>, we describe a pattern to show that the ideals of certain opposite embedded Schubert varieties (defined by this pattern) arise by taking residual intersections of two (geometrically linked) opposite Schubert varieties which we call <em>Ulrich pair</em>. This pattern is uniform for the ADE types. Some of the free resolutions of the Schubert varieties in question are important for the structure of finite free resolutions. Our proof is representation theoretical and uniform for our pattern, however it is possible to derive our results using case-by-case analysis and the aid of a computer.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 62-85\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004508\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004508","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

受Ulrich[26]和Huneke-Ulrich[25]工作的启发,我们描述了一种模式来表明某些相反嵌入的Schubert变体(由该模式定义)的理想是通过取两个(几何连接的)相反的Schubert变体(我们称之为Ulrich对)的残差相交产生的。此模式对于ADE类型是统一的。所讨论的舒伯特变分的一些自由分辨率对于有限自由分辨率的结构是重要的。对于我们的模式,我们的证明是理论性的和统一的,然而,使用逐个分析和计算机的帮助来推导结果是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Residual intersections and Schubert varieties
Inspired by the work of Ulrich [26] and Huneke–Ulrich [25], we describe a pattern to show that the ideals of certain opposite embedded Schubert varieties (defined by this pattern) arise by taking residual intersections of two (geometrically linked) opposite Schubert varieties which we call Ulrich pair. This pattern is uniform for the ADE types. Some of the free resolutions of the Schubert varieties in question are important for the structure of finite free resolutions. Our proof is representation theoretical and uniform for our pattern, however it is possible to derive our results using case-by-case analysis and the aid of a computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信