有限不可解群的第二最小平均特征度

IF 0.8 2区 数学 Q2 MATHEMATICS
Kamal Aziziheris , Mahnaz Eivazzadeh
{"title":"有限不可解群的第二最小平均特征度","authors":"Kamal Aziziheris ,&nbsp;Mahnaz Eivazzadeh","doi":"10.1016/j.jalgebra.2025.07.029","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the average character degree of a finite group <em>G</em>. It has been proved that <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>A</mi><mo>}</mo><mo>=</mo><mrow><mi>acd</mi></mrow><mo>(</mo><msub><mrow><mtext>A</mtext></mrow><mrow><mn>5</mn></mrow></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>16</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, where <span><math><mi>A</mi></math></span> is the family of all finite nonsolvable groups. In this paper, we assume that <span><math><mi>B</mi></math></span> is the family of all finite nonsolvable groups <em>G</em> having a nonabelian minimal normal subgroup not isomorphic to <span><math><msub><mrow><mtext>A</mtext></mrow><mrow><mn>5</mn></mrow></msub></math></span>. We prove that <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>B</mi><mo>}</mo><mo>=</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mrow><mi>PSL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>7</mn><mo>)</mo><mo>)</mo><mo>=</mo><mfrac><mrow><mn>14</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>. While we show that the second minimum average character degree of arbitrary nonsolvable groups does not exist, we classify all finite groups with <span><math><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>&lt;</mo><mn>14</mn><mo>/</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 26-45"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the second minimum average character degree of finite nonsolvable groups\",\"authors\":\"Kamal Aziziheris ,&nbsp;Mahnaz Eivazzadeh\",\"doi\":\"10.1016/j.jalgebra.2025.07.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the average character degree of a finite group <em>G</em>. It has been proved that <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>A</mi><mo>}</mo><mo>=</mo><mrow><mi>acd</mi></mrow><mo>(</mo><msub><mrow><mtext>A</mtext></mrow><mrow><mn>5</mn></mrow></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>16</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, where <span><math><mi>A</mi></math></span> is the family of all finite nonsolvable groups. In this paper, we assume that <span><math><mi>B</mi></math></span> is the family of all finite nonsolvable groups <em>G</em> having a nonabelian minimal normal subgroup not isomorphic to <span><math><msub><mrow><mtext>A</mtext></mrow><mrow><mn>5</mn></mrow></msub></math></span>. We prove that <span><math><mi>min</mi><mo>⁡</mo><mo>{</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>B</mi><mo>}</mo><mo>=</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mrow><mi>PSL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>7</mn><mo>)</mo><mo>)</mo><mo>=</mo><mfrac><mrow><mn>14</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>. While we show that the second minimum average character degree of arbitrary nonsolvable groups does not exist, we classify all finite groups with <span><math><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>&lt;</mo><mn>14</mn><mo>/</mo><mn>3</mn></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 26-45\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004387\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004387","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设add (G)为有限群G的平均特征度,证明了min ({add (G)|G∈a}= add (A5)=165,其中a是所有有限不可解群的族。在本文中,我们假设B是所有有限不可解群G具有一个非abel最小正规子群与A5不同构的族。我们证明最小⁡{acd (G) | G∈B} = acd (PSL(2、7))= 143。在证明任意不可解群的第二最小平均特征度不存在的同时,我们用add (G)<;14/3对所有有限群进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the second minimum average character degree of finite nonsolvable groups
Let acd(G) be the average character degree of a finite group G. It has been proved that min{acd(G)|GA}=acd(A5)=165, where A is the family of all finite nonsolvable groups. In this paper, we assume that B is the family of all finite nonsolvable groups G having a nonabelian minimal normal subgroup not isomorphic to A5. We prove that min{acd(G)|GB}=acd(PSL(2,7))=143. While we show that the second minimum average character degree of arbitrary nonsolvable groups does not exist, we classify all finite groups with acd(G)<14/3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信