{"title":"有限不可解群的第二最小平均特征度","authors":"Kamal Aziziheris , Mahnaz Eivazzadeh","doi":"10.1016/j.jalgebra.2025.07.029","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the average character degree of a finite group <em>G</em>. It has been proved that <span><math><mi>min</mi><mo></mo><mo>{</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>A</mi><mo>}</mo><mo>=</mo><mrow><mi>acd</mi></mrow><mo>(</mo><msub><mrow><mtext>A</mtext></mrow><mrow><mn>5</mn></mrow></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>16</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, where <span><math><mi>A</mi></math></span> is the family of all finite nonsolvable groups. In this paper, we assume that <span><math><mi>B</mi></math></span> is the family of all finite nonsolvable groups <em>G</em> having a nonabelian minimal normal subgroup not isomorphic to <span><math><msub><mrow><mtext>A</mtext></mrow><mrow><mn>5</mn></mrow></msub></math></span>. We prove that <span><math><mi>min</mi><mo></mo><mo>{</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>B</mi><mo>}</mo><mo>=</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mrow><mi>PSL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>7</mn><mo>)</mo><mo>)</mo><mo>=</mo><mfrac><mrow><mn>14</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>. While we show that the second minimum average character degree of arbitrary nonsolvable groups does not exist, we classify all finite groups with <span><math><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo><</mo><mn>14</mn><mo>/</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 26-45"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the second minimum average character degree of finite nonsolvable groups\",\"authors\":\"Kamal Aziziheris , Mahnaz Eivazzadeh\",\"doi\":\"10.1016/j.jalgebra.2025.07.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the average character degree of a finite group <em>G</em>. It has been proved that <span><math><mi>min</mi><mo></mo><mo>{</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>A</mi><mo>}</mo><mo>=</mo><mrow><mi>acd</mi></mrow><mo>(</mo><msub><mrow><mtext>A</mtext></mrow><mrow><mn>5</mn></mrow></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>16</mn></mrow><mrow><mn>5</mn></mrow></mfrac></math></span>, where <span><math><mi>A</mi></math></span> is the family of all finite nonsolvable groups. In this paper, we assume that <span><math><mi>B</mi></math></span> is the family of all finite nonsolvable groups <em>G</em> having a nonabelian minimal normal subgroup not isomorphic to <span><math><msub><mrow><mtext>A</mtext></mrow><mrow><mn>5</mn></mrow></msub></math></span>. We prove that <span><math><mi>min</mi><mo></mo><mo>{</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mi>G</mi><mo>∈</mo><mi>B</mi><mo>}</mo><mo>=</mo><mrow><mi>acd</mi></mrow><mo>(</mo><mrow><mi>PSL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>7</mn><mo>)</mo><mo>)</mo><mo>=</mo><mfrac><mrow><mn>14</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>. While we show that the second minimum average character degree of arbitrary nonsolvable groups does not exist, we classify all finite groups with <span><math><mrow><mi>acd</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo><</mo><mn>14</mn><mo>/</mo><mn>3</mn></math></span>.</div></div>\",\"PeriodicalId\":14888,\"journal\":{\"name\":\"Journal of Algebra\",\"volume\":\"685 \",\"pages\":\"Pages 26-45\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869325004387\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004387","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the second minimum average character degree of finite nonsolvable groups
Let be the average character degree of a finite group G. It has been proved that , where is the family of all finite nonsolvable groups. In this paper, we assume that is the family of all finite nonsolvable groups G having a nonabelian minimal normal subgroup not isomorphic to . We prove that . While we show that the second minimum average character degree of arbitrary nonsolvable groups does not exist, we classify all finite groups with .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.