偶数维向量空间中最大Erdős-Ko-Rado室集及其反设计

IF 1.2 2区 数学 Q2 MATHEMATICS
Philipp Heering , Jesse Lansdown , Klaus Metsch
{"title":"偶数维向量空间中最大Erdős-Ko-Rado室集及其反设计","authors":"Philipp Heering ,&nbsp;Jesse Lansdown ,&nbsp;Klaus Metsch","doi":"10.1016/j.jcta.2025.106098","DOIUrl":null,"url":null,"abstract":"<div><div>A chamber of the vector space <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is a set <span><math><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> of subspaces of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><mo>…</mo><mo>⊂</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><mi>dim</mi><mo>⁡</mo><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>i</mi></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. By <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> we denote the graph whose vertices are the chambers of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> with two chambers <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> adjacent in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, if <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. The Erdős-Ko-Rado problem on chambers is equivalent to determining the structure of independent sets of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. The independence number of this graph was determined in <span><span>[5]</span></span> for <em>n</em> even and given a subspace <em>P</em> of dimension one, the set of all chambers whose subspaces of dimension <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> contain <em>P</em> attains the bound. The dual example of course also attains the bound. It remained open in <span><span>[5]</span></span> whether or not these are all maximum independent sets. Using a description from <span><span>[6]</span></span> of the eigenspace for the smallest eigenvalue of this graph, we prove an Erdős-Ko-Rado theorem on chambers of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> for sufficiently large <em>q</em>, giving an affirmative answer for n even.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106098"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximum Erdős-Ko-Rado sets of chambers and their antidesigns in vector-spaces of even dimension\",\"authors\":\"Philipp Heering ,&nbsp;Jesse Lansdown ,&nbsp;Klaus Metsch\",\"doi\":\"10.1016/j.jcta.2025.106098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A chamber of the vector space <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is a set <span><math><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> of subspaces of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><mo>…</mo><mo>⊂</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><mi>dim</mi><mo>⁡</mo><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>i</mi></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. By <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> we denote the graph whose vertices are the chambers of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> with two chambers <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> adjacent in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, if <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. The Erdős-Ko-Rado problem on chambers is equivalent to determining the structure of independent sets of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. The independence number of this graph was determined in <span><span>[5]</span></span> for <em>n</em> even and given a subspace <em>P</em> of dimension one, the set of all chambers whose subspaces of dimension <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> contain <em>P</em> attains the bound. The dual example of course also attains the bound. It remained open in <span><span>[5]</span></span> whether or not these are all maximum independent sets. Using a description from <span><span>[6]</span></span> of the eigenspace for the smallest eigenvalue of this graph, we prove an Erdős-Ko-Rado theorem on chambers of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> for sufficiently large <em>q</em>, giving an affirmative answer for n even.</div></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"217 \",\"pages\":\"Article 106098\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316525000937\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000937","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

向量空间Fqn的一个室是Fqn的子空间{S1,…,Sn−1}的集合,其中S1∧S2∧…∧Sn−1,且对于i=1,…,n−1,dim (Si)=i。通过Γn(q)表示顶点为Fqn的腔室,并且在Γn(q)中相邻两个腔室C1={S1,…,Sn−1}和C2={T1,…,Tn−1}的图,如果Si∩Tn−i={0},对于i=1,…,n−1。关于腔室的Erdős-Ko-Rado问题相当于确定Γn(q)的独立集的结构。在[5]中对n偶确定图的独立性数,并给定1维的子空间P,其n2维的子空间包含P的所有室的集合达到界。对偶例子当然也得到了边界。它在[5]中保持开放,不管这些是否都是极大独立集。利用[6]对该图最小特征值的特征空间的描述,证明了对于足够大的q, Fqn室的一个Erdős-Ko-Rado定理,给出了对于偶数n的肯定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Erdős-Ko-Rado sets of chambers and their antidesigns in vector-spaces of even dimension
A chamber of the vector space Fqn is a set {S1,,Sn1} of subspaces of Fqn where S1S2Sn1 and dim(Si)=i for i=1,,n1. By Γn(q) we denote the graph whose vertices are the chambers of Fqn with two chambers C1={S1,,Sn1} and C2={T1,,Tn1} adjacent in Γn(q), if SiTni={0} for i=1,,n1. The Erdős-Ko-Rado problem on chambers is equivalent to determining the structure of independent sets of Γn(q). The independence number of this graph was determined in [5] for n even and given a subspace P of dimension one, the set of all chambers whose subspaces of dimension n2 contain P attains the bound. The dual example of course also attains the bound. It remained open in [5] whether or not these are all maximum independent sets. Using a description from [6] of the eigenspace for the smallest eigenvalue of this graph, we prove an Erdős-Ko-Rado theorem on chambers of Fqn for sufficiently large q, giving an affirmative answer for n even.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信