运动粒子半隐式方法中拉普拉斯算子的泰勒一致离散化

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Stephen Miller , Emiliano Renzi , Marco Discacciati
{"title":"运动粒子半隐式方法中拉普拉斯算子的泰勒一致离散化","authors":"Stephen Miller ,&nbsp;Emiliano Renzi ,&nbsp;Marco Discacciati","doi":"10.1016/j.cam.2025.117000","DOIUrl":null,"url":null,"abstract":"<div><div>We derive a new Laplacian approximation for use in the Moving Particle Semi-Implicit method, ensuring a rigorous mathematical foundation based on Taylor expansion. The accuracy of this novel approximation is evaluated through comparison with other existing methods by studying the convergence rate of the numerical approximation in uniform and perturbed particle arrangements, and when solving a Poisson problem with different types of boundary conditions. The proposed model allows for easier implementation with respect to previous techniques, and always guarantees an accuracy of at least first order.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"475 ","pages":"Article 117000"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Taylor consistent discretisation of the Laplace operator in the Moving Particle Semi-implicit method\",\"authors\":\"Stephen Miller ,&nbsp;Emiliano Renzi ,&nbsp;Marco Discacciati\",\"doi\":\"10.1016/j.cam.2025.117000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We derive a new Laplacian approximation for use in the Moving Particle Semi-Implicit method, ensuring a rigorous mathematical foundation based on Taylor expansion. The accuracy of this novel approximation is evaluated through comparison with other existing methods by studying the convergence rate of the numerical approximation in uniform and perturbed particle arrangements, and when solving a Poisson problem with different types of boundary conditions. The proposed model allows for easier implementation with respect to previous techniques, and always guarantees an accuracy of at least first order.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"475 \",\"pages\":\"Article 117000\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037704272500514X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037704272500514X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们推导了一种新的拉普拉斯近似用于运动粒子半隐式方法,保证了基于泰勒展开的严格的数学基础。通过研究该数值近似在均匀粒子排列和摄动粒子排列情况下的收敛速度,以及在求解具有不同边界条件的泊松问题时的收敛速度,比较了该方法的准确性。与以前的技术相比,所提出的模型更容易实现,并且总是保证至少一阶的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taylor consistent discretisation of the Laplace operator in the Moving Particle Semi-implicit method
We derive a new Laplacian approximation for use in the Moving Particle Semi-Implicit method, ensuring a rigorous mathematical foundation based on Taylor expansion. The accuracy of this novel approximation is evaluated through comparison with other existing methods by studying the convergence rate of the numerical approximation in uniform and perturbed particle arrangements, and when solving a Poisson problem with different types of boundary conditions. The proposed model allows for easier implementation with respect to previous techniques, and always guarantees an accuracy of at least first order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信