粗糙平行矩形板挤压膜润滑特性中微极流体和表面粗糙度的随机reynolds方程

Q1 Mathematics
B.S. Asha , H.M. Shivakumar , B.N. Hanumagowda , Jagadish V. Tawade , Barno Abdullaeva , Manish Gupta , Murali Gundagani , Taoufik Saidani , Nadia Batool
{"title":"粗糙平行矩形板挤压膜润滑特性中微极流体和表面粗糙度的随机reynolds方程","authors":"B.S. Asha ,&nbsp;H.M. Shivakumar ,&nbsp;B.N. Hanumagowda ,&nbsp;Jagadish V. Tawade ,&nbsp;Barno Abdullaeva ,&nbsp;Manish Gupta ,&nbsp;Murali Gundagani ,&nbsp;Taoufik Saidani ,&nbsp;Nadia Batool","doi":"10.1016/j.padiff.2025.101269","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive theoretical investigation into the influence of surface roughness, magnetohydrodynamics (MHD), and micropolar fluid dynamics on the squeeze film behavior between two wide, parallel rectangular plates. A modified Reynolds equation is derived by incorporating Eringen’s microcontinuum theory, Christensen’s stochastic surface roughness model, and classical hydrodynamic principles. The model accounts for the effects of a perpendicular magnetic field and longitudinal surface irregularities. Key performance parameters—namely pressure distribution, load-carrying capacity, and squeeze film duration—are obtained analytically and evaluated using dimensionless groups such as the Hartmann number, coupling number, fluid gap interaction number, and surface roughness parameter. The results demonstrate that incorporating micropolar fluid properties and MHD effects significantly enhances squeeze film performance compared to the Newtonian fluid case. Surface roughness is also found to play a beneficial role in improving load support and film retention. The findings offer valuable insights for designing advanced lubrication systems in engineering applications where microstructural effects and magnetic fields are present.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"15 ","pages":"Article 101269"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic reynolds equation for magnetohydrodynamics micropolar fluid and surface roughness in squeeze-film lubrication characteristics of rough parallel rectangular plates\",\"authors\":\"B.S. Asha ,&nbsp;H.M. Shivakumar ,&nbsp;B.N. Hanumagowda ,&nbsp;Jagadish V. Tawade ,&nbsp;Barno Abdullaeva ,&nbsp;Manish Gupta ,&nbsp;Murali Gundagani ,&nbsp;Taoufik Saidani ,&nbsp;Nadia Batool\",\"doi\":\"10.1016/j.padiff.2025.101269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a comprehensive theoretical investigation into the influence of surface roughness, magnetohydrodynamics (MHD), and micropolar fluid dynamics on the squeeze film behavior between two wide, parallel rectangular plates. A modified Reynolds equation is derived by incorporating Eringen’s microcontinuum theory, Christensen’s stochastic surface roughness model, and classical hydrodynamic principles. The model accounts for the effects of a perpendicular magnetic field and longitudinal surface irregularities. Key performance parameters—namely pressure distribution, load-carrying capacity, and squeeze film duration—are obtained analytically and evaluated using dimensionless groups such as the Hartmann number, coupling number, fluid gap interaction number, and surface roughness parameter. The results demonstrate that incorporating micropolar fluid properties and MHD effects significantly enhances squeeze film performance compared to the Newtonian fluid case. Surface roughness is also found to play a beneficial role in improving load support and film retention. The findings offer valuable insights for designing advanced lubrication systems in engineering applications where microstructural effects and magnetic fields are present.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"15 \",\"pages\":\"Article 101269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究对表面粗糙度、磁流体动力学(MHD)和微极流体动力学对两个宽平行矩形板之间挤压膜行为的影响进行了全面的理论研究。结合Eringen的微连续统理论、Christensen的随机表面粗糙度模型和经典流体力学原理,导出了一个修正的Reynolds方程。该模型考虑了垂直磁场和纵向表面不规则性的影响。关键性能参数,即压力分布、承载能力和挤压膜持续时间,是通过分析得到的,并使用无量纲群,如哈特曼数、耦合数、流体间隙相互作用数和表面粗糙度参数进行评估。结果表明,与牛顿流体情况相比,结合微极流体特性和MHD效应显著提高了挤压膜的性能。表面粗糙度也被发现在改善负载支撑和膜保持方面起着有益的作用。这一发现为在存在微观结构效应和磁场的工程应用中设计先进的润滑系统提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic reynolds equation for magnetohydrodynamics micropolar fluid and surface roughness in squeeze-film lubrication characteristics of rough parallel rectangular plates
This study presents a comprehensive theoretical investigation into the influence of surface roughness, magnetohydrodynamics (MHD), and micropolar fluid dynamics on the squeeze film behavior between two wide, parallel rectangular plates. A modified Reynolds equation is derived by incorporating Eringen’s microcontinuum theory, Christensen’s stochastic surface roughness model, and classical hydrodynamic principles. The model accounts for the effects of a perpendicular magnetic field and longitudinal surface irregularities. Key performance parameters—namely pressure distribution, load-carrying capacity, and squeeze film duration—are obtained analytically and evaluated using dimensionless groups such as the Hartmann number, coupling number, fluid gap interaction number, and surface roughness parameter. The results demonstrate that incorporating micropolar fluid properties and MHD effects significantly enhances squeeze film performance compared to the Newtonian fluid case. Surface roughness is also found to play a beneficial role in improving load support and film retention. The findings offer valuable insights for designing advanced lubrication systems in engineering applications where microstructural effects and magnetic fields are present.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信