Hamid Khan , Hammad Riaz , Adeel Ahmed , Mubin Mustafa Kiyani , Sahibzada Muhammad Jawad , Syed Shahab Ud Din Shah , Turki Abualait , Fawaz Al-hussain , Hong-Tao Li , Shahid Bashir
{"title":"CRISPR/Cas9基因工程技术用于治疗ALS小鼠模型","authors":"Hamid Khan , Hammad Riaz , Adeel Ahmed , Mubin Mustafa Kiyani , Sahibzada Muhammad Jawad , Syed Shahab Ud Din Shah , Turki Abualait , Fawaz Al-hussain , Hong-Tao Li , Shahid Bashir","doi":"10.1016/j.reth.2025.07.009","DOIUrl":null,"url":null,"abstract":"<div><div>Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by the death of motor neurons in the spinal cord and brain regions, leading to a reduced survival rate in patients. Nearly 20 gene mutations are associated with ALS, with SOD1, FUS, TARDBP, and C9orf72 mutations being more common. Ninety percent of ALS cases are related to sporadic ALS, while the remaining 10 % are associated with familial ALS. CRISPR/Cas9, a genome engineering technology known as clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9, has the potential for gene editing and for studying the underlying mechanisms of ALS in mouse models. This technique enables neuroscientists to reverse mutations found in ALS mouse models, providing new hope for understanding the complexities of ALS. Additionally, this tool can create mutations to probe the functional changes of genetic diseases. Using CRISPR/Cas9 with an in vivo delivery method involving adeno-associated vectors, it is possible to silence mutations in the SOD1-linked ALS mouse model. Some limitations related to CRISPR/Cas9 have been discussed in previous studies and need to be addressed before clinical trials can proceed. In this review-based study, we summarise the latest research on CRISPR/Cas9 genome editing for ALS in mouse models and discuss its limitations and future prospects as well.</div></div>","PeriodicalId":20895,"journal":{"name":"Regenerative Therapy","volume":"30 ","pages":"Pages 575-583"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas9 a genomic engineering technology for treatment in ALS mouse models\",\"authors\":\"Hamid Khan , Hammad Riaz , Adeel Ahmed , Mubin Mustafa Kiyani , Sahibzada Muhammad Jawad , Syed Shahab Ud Din Shah , Turki Abualait , Fawaz Al-hussain , Hong-Tao Li , Shahid Bashir\",\"doi\":\"10.1016/j.reth.2025.07.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by the death of motor neurons in the spinal cord and brain regions, leading to a reduced survival rate in patients. Nearly 20 gene mutations are associated with ALS, with SOD1, FUS, TARDBP, and C9orf72 mutations being more common. Ninety percent of ALS cases are related to sporadic ALS, while the remaining 10 % are associated with familial ALS. CRISPR/Cas9, a genome engineering technology known as clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9, has the potential for gene editing and for studying the underlying mechanisms of ALS in mouse models. This technique enables neuroscientists to reverse mutations found in ALS mouse models, providing new hope for understanding the complexities of ALS. Additionally, this tool can create mutations to probe the functional changes of genetic diseases. Using CRISPR/Cas9 with an in vivo delivery method involving adeno-associated vectors, it is possible to silence mutations in the SOD1-linked ALS mouse model. Some limitations related to CRISPR/Cas9 have been discussed in previous studies and need to be addressed before clinical trials can proceed. In this review-based study, we summarise the latest research on CRISPR/Cas9 genome editing for ALS in mouse models and discuss its limitations and future prospects as well.</div></div>\",\"PeriodicalId\":20895,\"journal\":{\"name\":\"Regenerative Therapy\",\"volume\":\"30 \",\"pages\":\"Pages 575-583\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Therapy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352320425001634\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Therapy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352320425001634","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
CRISPR/Cas9 a genomic engineering technology for treatment in ALS mouse models
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by the death of motor neurons in the spinal cord and brain regions, leading to a reduced survival rate in patients. Nearly 20 gene mutations are associated with ALS, with SOD1, FUS, TARDBP, and C9orf72 mutations being more common. Ninety percent of ALS cases are related to sporadic ALS, while the remaining 10 % are associated with familial ALS. CRISPR/Cas9, a genome engineering technology known as clustered regularly interspaced short palindromic repeats/CRISPR-associated system 9, has the potential for gene editing and for studying the underlying mechanisms of ALS in mouse models. This technique enables neuroscientists to reverse mutations found in ALS mouse models, providing new hope for understanding the complexities of ALS. Additionally, this tool can create mutations to probe the functional changes of genetic diseases. Using CRISPR/Cas9 with an in vivo delivery method involving adeno-associated vectors, it is possible to silence mutations in the SOD1-linked ALS mouse model. Some limitations related to CRISPR/Cas9 have been discussed in previous studies and need to be addressed before clinical trials can proceed. In this review-based study, we summarise the latest research on CRISPR/Cas9 genome editing for ALS in mouse models and discuss its limitations and future prospects as well.
期刊介绍:
Regenerative Therapy is the official peer-reviewed online journal of the Japanese Society for Regenerative Medicine.
Regenerative Therapy is a multidisciplinary journal that publishes original articles and reviews of basic research, clinical translation, industrial development, and regulatory issues focusing on stem cell biology, tissue engineering, and regenerative medicine.