立方X₂scii卤化物双钙钛矿中带隙调制和光物质相互作用的第一性原理研究,用于新兴能源应用

IF 4.3 Q2 CHEMISTRY, PHYSICAL
Muhammad Yar Khan , Muhammad Awais Jehangir , It Ee Lee , Qamar Wali , Tariq Usman , Li Xiaojie , Abdullah Al Souwaileh
{"title":"立方X₂scii卤化物双钙钛矿中带隙调制和光物质相互作用的第一性原理研究,用于新兴能源应用","authors":"Muhammad Yar Khan ,&nbsp;Muhammad Awais Jehangir ,&nbsp;It Ee Lee ,&nbsp;Qamar Wali ,&nbsp;Tariq Usman ,&nbsp;Li Xiaojie ,&nbsp;Abdullah Al Souwaileh","doi":"10.1016/j.chphi.2025.100920","DOIUrl":null,"url":null,"abstract":"<div><div>Double perovskites as promising substitutes to address energy deficiencies, potentially serving as sustainable materials for energy production. The ongoing investigations into these compounds are essential for the advancement of optoelectronic devices. In this work, we conducted an inclusive examination of the properties of X<sub>2</sub>ScInI<sub>6</sub> (A = K, Rb) double perovskite halides utilizing DFT calculations with the all-electron FP-LAPW+lo technique, particularly focusing on replenish able energy sensors. Our findings demonstrate that the energy of formation and Goldsmith's tolerance factor calculations suggest that these halides retain structural and thermodynamic stability in the cubic phase. The stability was further validated by Phonon Dispersion Spectra through the linear response method using the Material Studio code. An evaluation of the elastic properties indicated that the Pugh’s (B/G) and Poisson ratios suggest a ductile nature. We also computed band-gaps in cooperation with TB-mBJ, along with and without spin-orbit coupling (SOC). The bandgap metrics for K<sub>2</sub>ScInI<sub>6</sub> (E<sub>g</sub> = 1.965 eV and 1.911 eV) and Rb<sub>2</sub>ScInI<sub>6</sub> (E<sub>g</sub> = 1.993 eV and 1.940 eV) were derived using Trans and Blaha modified Becke-Johnson (TB-mBJ &amp; TB-mBJ+SOC) potentials. Additionally, we investigated the optical properties of these halides, focusing on their complex dielectric functions. Our results suggest that these X<sub>2</sub>ScInI<sub>6</sub> (X = K, Rb) halides DPs can be effectively utilized in optoelectronic equipment due to their capacity to absorb light in the UV spectrum. We anticipate that our findings will aid future experimental studies on X<sub>2</sub>ScInI<sub>6</sub> (X = K, Rb) for energy-efficient applications.</div></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":"11 ","pages":"Article 100920"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First principles investigation of bandgap modulation and light matter interaction in cubic X₂ScInI₆ halide double perovskites for emerging energy applications\",\"authors\":\"Muhammad Yar Khan ,&nbsp;Muhammad Awais Jehangir ,&nbsp;It Ee Lee ,&nbsp;Qamar Wali ,&nbsp;Tariq Usman ,&nbsp;Li Xiaojie ,&nbsp;Abdullah Al Souwaileh\",\"doi\":\"10.1016/j.chphi.2025.100920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Double perovskites as promising substitutes to address energy deficiencies, potentially serving as sustainable materials for energy production. The ongoing investigations into these compounds are essential for the advancement of optoelectronic devices. In this work, we conducted an inclusive examination of the properties of X<sub>2</sub>ScInI<sub>6</sub> (A = K, Rb) double perovskite halides utilizing DFT calculations with the all-electron FP-LAPW+lo technique, particularly focusing on replenish able energy sensors. Our findings demonstrate that the energy of formation and Goldsmith's tolerance factor calculations suggest that these halides retain structural and thermodynamic stability in the cubic phase. The stability was further validated by Phonon Dispersion Spectra through the linear response method using the Material Studio code. An evaluation of the elastic properties indicated that the Pugh’s (B/G) and Poisson ratios suggest a ductile nature. We also computed band-gaps in cooperation with TB-mBJ, along with and without spin-orbit coupling (SOC). The bandgap metrics for K<sub>2</sub>ScInI<sub>6</sub> (E<sub>g</sub> = 1.965 eV and 1.911 eV) and Rb<sub>2</sub>ScInI<sub>6</sub> (E<sub>g</sub> = 1.993 eV and 1.940 eV) were derived using Trans and Blaha modified Becke-Johnson (TB-mBJ &amp; TB-mBJ+SOC) potentials. Additionally, we investigated the optical properties of these halides, focusing on their complex dielectric functions. Our results suggest that these X<sub>2</sub>ScInI<sub>6</sub> (X = K, Rb) halides DPs can be effectively utilized in optoelectronic equipment due to their capacity to absorb light in the UV spectrum. We anticipate that our findings will aid future experimental studies on X<sub>2</sub>ScInI<sub>6</sub> (X = K, Rb) for energy-efficient applications.</div></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":\"11 \",\"pages\":\"Article 100920\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022425001069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022425001069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

双钙钛矿作为解决能源短缺的有前途的替代品,有可能成为能源生产的可持续材料。对这些化合物的持续研究对光电器件的发展至关重要。在这项工作中,我们利用全电子FP-LAPW+lo技术的DFT计算,对X2ScInI6 (A = K, Rb)双钙钛矿卤化物的性质进行了全面的检查,特别关注可补充能量传感器。我们的研究结果表明,地层能量和Goldsmith的容差系数计算表明,这些卤化物在立方相中保持了结构和热力学稳定性。利用Material Studio代码通过线性响应方法进一步验证了声子色散谱的稳定性。弹性性能的评估表明,皮尤(B/G)和泊松比表明延展性。我们还与TB-mBJ合作计算了带隙,以及有无自旋轨道耦合(SOC)。利用Trans和Blaha修正的Becke-Johnson (TB-mBJ &;TB-mBJ + SOC)的潜力。此外,我们研究了这些卤化物的光学性质,重点研究了它们的复杂介电函数。我们的研究结果表明,由于这些X2ScInI6 (X = K, Rb)卤化物具有吸收紫外光谱中的光的能力,因此可以有效地用于光电子设备。我们预计我们的发现将有助于未来对x2sciini6 (X = K, Rb)进行节能应用的实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First principles investigation of bandgap modulation and light matter interaction in cubic X₂ScInI₆ halide double perovskites for emerging energy applications

First principles investigation of bandgap modulation and light matter interaction in cubic X₂ScInI₆ halide double perovskites for emerging energy applications
Double perovskites as promising substitutes to address energy deficiencies, potentially serving as sustainable materials for energy production. The ongoing investigations into these compounds are essential for the advancement of optoelectronic devices. In this work, we conducted an inclusive examination of the properties of X2ScInI6 (A = K, Rb) double perovskite halides utilizing DFT calculations with the all-electron FP-LAPW+lo technique, particularly focusing on replenish able energy sensors. Our findings demonstrate that the energy of formation and Goldsmith's tolerance factor calculations suggest that these halides retain structural and thermodynamic stability in the cubic phase. The stability was further validated by Phonon Dispersion Spectra through the linear response method using the Material Studio code. An evaluation of the elastic properties indicated that the Pugh’s (B/G) and Poisson ratios suggest a ductile nature. We also computed band-gaps in cooperation with TB-mBJ, along with and without spin-orbit coupling (SOC). The bandgap metrics for K2ScInI6 (Eg = 1.965 eV and 1.911 eV) and Rb2ScInI6 (Eg = 1.993 eV and 1.940 eV) were derived using Trans and Blaha modified Becke-Johnson (TB-mBJ & TB-mBJ+SOC) potentials. Additionally, we investigated the optical properties of these halides, focusing on their complex dielectric functions. Our results suggest that these X2ScInI6 (X = K, Rb) halides DPs can be effectively utilized in optoelectronic equipment due to their capacity to absorb light in the UV spectrum. We anticipate that our findings will aid future experimental studies on X2ScInI6 (X = K, Rb) for energy-efficient applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信