Jimmy Devergne , Arianna Servili , Sylvain Jodet , Titouan Brandicourt , Christophe Lebigre , Sophie Collet , Olivier Mouchel , Marie Lou Fleury , Sabine Roussel , Véronique Loizeau
{"title":"早期暴露于17α-乙炔雌醇对三棘棘鱼(Gasterosteus aculeatus)生理在当前和未来气候情景下的影响","authors":"Jimmy Devergne , Arianna Servili , Sylvain Jodet , Titouan Brandicourt , Christophe Lebigre , Sophie Collet , Olivier Mouchel , Marie Lou Fleury , Sabine Roussel , Véronique Loizeau","doi":"10.1016/j.aquatox.2025.107528","DOIUrl":null,"url":null,"abstract":"<div><div>Ocean warming and acidification are climate change related drivers that impact the physiology of marine organisms and their ability to cope with future environments. Marine ecosystems are also facing pollution from an ever-growing diversity of chemical contaminants, including endocrine disruptors. A common example is the 17α-ethynylestradiol (EE2), which can affect the endocrine regulation of fish and hence potentially impact their fitness. Thus, fish have to cope to multiple climatic and chemical stresses that can interact, influencing the overall impact on fish physiology. In this study, we investigated whether the direct and carry-over effect of early exposure to EE2 (15 ng.L<sup>−1</sup>; one month during embryo-larval development) are modulated by the RCP8.5 scenario (+3°C; -0.4 pH unit). Five months post-contamination, we measured survival, growth and reproductive axis of prepubertal sticklebacks. Our findings revealed that the survival of juveniles, when exposed to EE2 during early development, is reduced under Current but not RCP8.5 scenario. Furthermore, under RCP8.5-EE2, a significantly lower body length was observed. Sex and tissue specific responses in terms of the expression profiles of genes related to development and sexual maturation was reported. Interestingly, significant interaction between RCP8.5 and EE2 was observed for the expression of ovarian aromatase (<em>cyp19a1a</em>), suggesting a long-lasting estrogenic effect under RCP8.5 scenario. Additionally, the skewed sex ratios and the presence of intersex individuals in both scenarios early exposed to EE2 suggested a feminization due to EE2, which could potentially disrupt sexual maturation and future reproduction. Hence, the early EE2 exposure had carry-over physiological effects on sticklebacks, and these effects can be modulated by the climate scenario. This underscores the importance of conducting long-term multi-stress studies to comprehensively understand the vulnerability on fish populations in future environments.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"287 ","pages":"Article 107528"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of an early exposure to 17α-ethynylestradiol on the physiology of the three-spined stickleback (Gasterosteus aculeatus) under current and future climatic scenarios\",\"authors\":\"Jimmy Devergne , Arianna Servili , Sylvain Jodet , Titouan Brandicourt , Christophe Lebigre , Sophie Collet , Olivier Mouchel , Marie Lou Fleury , Sabine Roussel , Véronique Loizeau\",\"doi\":\"10.1016/j.aquatox.2025.107528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ocean warming and acidification are climate change related drivers that impact the physiology of marine organisms and their ability to cope with future environments. Marine ecosystems are also facing pollution from an ever-growing diversity of chemical contaminants, including endocrine disruptors. A common example is the 17α-ethynylestradiol (EE2), which can affect the endocrine regulation of fish and hence potentially impact their fitness. Thus, fish have to cope to multiple climatic and chemical stresses that can interact, influencing the overall impact on fish physiology. In this study, we investigated whether the direct and carry-over effect of early exposure to EE2 (15 ng.L<sup>−1</sup>; one month during embryo-larval development) are modulated by the RCP8.5 scenario (+3°C; -0.4 pH unit). Five months post-contamination, we measured survival, growth and reproductive axis of prepubertal sticklebacks. Our findings revealed that the survival of juveniles, when exposed to EE2 during early development, is reduced under Current but not RCP8.5 scenario. Furthermore, under RCP8.5-EE2, a significantly lower body length was observed. Sex and tissue specific responses in terms of the expression profiles of genes related to development and sexual maturation was reported. Interestingly, significant interaction between RCP8.5 and EE2 was observed for the expression of ovarian aromatase (<em>cyp19a1a</em>), suggesting a long-lasting estrogenic effect under RCP8.5 scenario. Additionally, the skewed sex ratios and the presence of intersex individuals in both scenarios early exposed to EE2 suggested a feminization due to EE2, which could potentially disrupt sexual maturation and future reproduction. Hence, the early EE2 exposure had carry-over physiological effects on sticklebacks, and these effects can be modulated by the climate scenario. This underscores the importance of conducting long-term multi-stress studies to comprehensively understand the vulnerability on fish populations in future environments.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"287 \",\"pages\":\"Article 107528\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X25002929\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25002929","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
The impact of an early exposure to 17α-ethynylestradiol on the physiology of the three-spined stickleback (Gasterosteus aculeatus) under current and future climatic scenarios
Ocean warming and acidification are climate change related drivers that impact the physiology of marine organisms and their ability to cope with future environments. Marine ecosystems are also facing pollution from an ever-growing diversity of chemical contaminants, including endocrine disruptors. A common example is the 17α-ethynylestradiol (EE2), which can affect the endocrine regulation of fish and hence potentially impact their fitness. Thus, fish have to cope to multiple climatic and chemical stresses that can interact, influencing the overall impact on fish physiology. In this study, we investigated whether the direct and carry-over effect of early exposure to EE2 (15 ng.L−1; one month during embryo-larval development) are modulated by the RCP8.5 scenario (+3°C; -0.4 pH unit). Five months post-contamination, we measured survival, growth and reproductive axis of prepubertal sticklebacks. Our findings revealed that the survival of juveniles, when exposed to EE2 during early development, is reduced under Current but not RCP8.5 scenario. Furthermore, under RCP8.5-EE2, a significantly lower body length was observed. Sex and tissue specific responses in terms of the expression profiles of genes related to development and sexual maturation was reported. Interestingly, significant interaction between RCP8.5 and EE2 was observed for the expression of ovarian aromatase (cyp19a1a), suggesting a long-lasting estrogenic effect under RCP8.5 scenario. Additionally, the skewed sex ratios and the presence of intersex individuals in both scenarios early exposed to EE2 suggested a feminization due to EE2, which could potentially disrupt sexual maturation and future reproduction. Hence, the early EE2 exposure had carry-over physiological effects on sticklebacks, and these effects can be modulated by the climate scenario. This underscores the importance of conducting long-term multi-stress studies to comprehensively understand the vulnerability on fish populations in future environments.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.